BERTMap: A BERT-Based Ontology Alignment System

Overview

BERTMap: A BERT-based Ontology Alignment System

Important Notices

About

BERTMap is a BERT-based ontology alignment system, which utilizes the textual knowledge of ontologies to fine-tune BERT and make prediction. It also incorporates sub-word inverted indices for candidate selection, and (graph-based) extension and (logic-based) repair modules for mapping refinement.

Essential dependencies

The following packages are necessary but not sufficient for running BERTMap:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch  # pytorch
pip install cython  # the optimized parser of owlready2 relies on Cython
pip install owlready2  # for managing ontologies
pip install tensorboard  # tensorboard logging (optional)
pip install transformers  # huggingface library
pip install datasets  # huggingface datasets

Running BERTMap

IMPORTANT NOTICE: BERTMap relies on class labels for training, but different ontologies have different annotation properties to define the aliases (synonyms), so preprocessing is required for adding all the synonyms to rdf:label before running BERTMap. The preprocessed ontologies involved in our paper together with their reference mappings are available in data.zip.

Clone the repository and run:

# fine-tuning and evaluate bertmap prediction 
python run_bertmap.py -c config.json -m bertmap

# mapping extension (-e specify which mapping set {src, tgt, combined} to be extended)
python extend_bertmap.py -c config.json -e src

# evaluate extended bertmap 
python eval_bertmap.py -c config.json -e src

# repair and evluate final outputs (-t specify best validation threshold)
python repair_bertmap.py -c config.json -e src -t 0.999

# baseline models (edit similarity and pretrained bert embeddings)
python run_bertmap.py -c config.json -m nes
python run_bertmap.py -c config.json -m bertembeds

The script skips data construction once built for the first time to ensure that all of the models share the same set of pre-processed data.

The fine-tuning model is implemented with huggingface Trainer, which by default uses multiple GPUs, for restricting to GPUs of specified indices, please run (for example):

# only device (1) and (2) are visible to the script
CUDA_VISIBLE_DEVICES=1,2 python run_bertmap.py -c config.json -m bertmap 

Configurations

Here gives the explanations of the variables used in config.json for customized BERTMap running.

  • data:
    • task_dir: directory for saving all the output files.
    • src_onto: source ontology name.
    • tgt_onto: target ontology name.
    • task_suffix: any suffix of the task if needed, e.g. the LargeBio track has 'small' and 'whole'.
    • src_onto_file: source ontology file in .owl format.
    • tgt_onto_fil: target ontology file in .owl format.
    • properties: list of textual properties used for constructing semantic data , default is class labels: ["label"].
    • cut: threshold length for the keys of sub-word inverted index, preserve the keys only if their lengths > cut, default is 0.
  • corpora:
    • sample_rate: number of (soft) negative samples for each positive sample generated in corpora (not the ultimate fine-tuning data).
    • src2tgt_mappings_file: reference mapping file for evaluation and semi-supervised learning setting in .tsv format with columns: "Entity1", "Entity2" and "Value".
    • ignored_mappings_file: file in .tsv format but stores mappings that should be ignored by the evaluator.
    • train_map_ratio: proportion of training mappings to used in semi-supervised setting, default is 0.2.
    • val_map_ratio: proportion of validation mappings to used in semi-supervised setting, default is 0.1.
    • test_map_ratio: proportion of test mappings to used in semi-supervised setting, default is 0.7.
    • io_soft_neg_rate: number of soft negative sample for each positive sample generated in the fine-tuning data at the intra-ontology level.
    • io_hard_neg_rate: number of hard negative sample for each positive sample generated in the fine-tuning data at the intra-ontology level.
    • co_soft_neg_rate: number of soft negative sample for each positive sample generated in the fine-tuning data at the cross-ontology level.
    • depth_threshold: classes of depths larger than this threshold will not considered in hard negative generation, default is null.
    • depth_strategy: strategy to compute the depths of the classes if any threshold is set, default is max, choices are max and min.
  • bert
    • pretrained_path: real or huggingface library path for pretrained BERT, e.g. "emilyalsentzer/Bio_ClinicalBERT" (BioClinicalBERT).
    • tokenizer_path: real or huggingface library path for BERT tokenizer, e.g. "emilyalsentzer/Bio_ClinicalBERT" (BioClinicalBERT).
  • fine-tune
    • include_ids: include identity synonyms in the positive samples or not.
    • learning: choice of learning setting ss (semi-supervised) or us (unsupervised).
    • warm_up_ratio: portion of warm up steps.
    • max_length: maximum length for tokenizer (highly important for large task!).
    • num_epochs: number of training epochs, default is 3.0.
    • batch_size: batch size for fine-tuning BERT.
    • early_stop: whether or not to apply early stopping (patience has been set to 10), default is false.
    • resume_checkpoint: path to previous checkpoint if any, default is null.
  • map
    • candidate_limits: list of candidate limits used for mapping computation, suggested values are [25, 50, 100, 150, 200].
    • batch_size: batch size used for mapping computation.
    • nbest: number of top results to be considered.
    • string_match: whether or not to use string match before others.
    • strategy: strategy for classifier scoring method, default is mean.
  • eval:
    • automatic: whether or not automatically evaluate the mappings.

Should you need any further customizaions especially on the evaluation part, please set eval: automatic to false and use your own evaluation script.

Acknolwedgements

The repair module is credited to Ernesto Jiménez Ruiz et al., and the code can be found here.

Owner
KRR
Knowledge Representation and Reasoning Group - University of Oxford
KRR
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
TianyuQi 10 Dec 11, 2022