BERTMap: A BERT-Based Ontology Alignment System

Overview

BERTMap: A BERT-based Ontology Alignment System

Important Notices

About

BERTMap is a BERT-based ontology alignment system, which utilizes the textual knowledge of ontologies to fine-tune BERT and make prediction. It also incorporates sub-word inverted indices for candidate selection, and (graph-based) extension and (logic-based) repair modules for mapping refinement.

Essential dependencies

The following packages are necessary but not sufficient for running BERTMap:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch  # pytorch
pip install cython  # the optimized parser of owlready2 relies on Cython
pip install owlready2  # for managing ontologies
pip install tensorboard  # tensorboard logging (optional)
pip install transformers  # huggingface library
pip install datasets  # huggingface datasets

Running BERTMap

IMPORTANT NOTICE: BERTMap relies on class labels for training, but different ontologies have different annotation properties to define the aliases (synonyms), so preprocessing is required for adding all the synonyms to rdf:label before running BERTMap. The preprocessed ontologies involved in our paper together with their reference mappings are available in data.zip.

Clone the repository and run:

# fine-tuning and evaluate bertmap prediction 
python run_bertmap.py -c config.json -m bertmap

# mapping extension (-e specify which mapping set {src, tgt, combined} to be extended)
python extend_bertmap.py -c config.json -e src

# evaluate extended bertmap 
python eval_bertmap.py -c config.json -e src

# repair and evluate final outputs (-t specify best validation threshold)
python repair_bertmap.py -c config.json -e src -t 0.999

# baseline models (edit similarity and pretrained bert embeddings)
python run_bertmap.py -c config.json -m nes
python run_bertmap.py -c config.json -m bertembeds

The script skips data construction once built for the first time to ensure that all of the models share the same set of pre-processed data.

The fine-tuning model is implemented with huggingface Trainer, which by default uses multiple GPUs, for restricting to GPUs of specified indices, please run (for example):

# only device (1) and (2) are visible to the script
CUDA_VISIBLE_DEVICES=1,2 python run_bertmap.py -c config.json -m bertmap 

Configurations

Here gives the explanations of the variables used in config.json for customized BERTMap running.

  • data:
    • task_dir: directory for saving all the output files.
    • src_onto: source ontology name.
    • tgt_onto: target ontology name.
    • task_suffix: any suffix of the task if needed, e.g. the LargeBio track has 'small' and 'whole'.
    • src_onto_file: source ontology file in .owl format.
    • tgt_onto_fil: target ontology file in .owl format.
    • properties: list of textual properties used for constructing semantic data , default is class labels: ["label"].
    • cut: threshold length for the keys of sub-word inverted index, preserve the keys only if their lengths > cut, default is 0.
  • corpora:
    • sample_rate: number of (soft) negative samples for each positive sample generated in corpora (not the ultimate fine-tuning data).
    • src2tgt_mappings_file: reference mapping file for evaluation and semi-supervised learning setting in .tsv format with columns: "Entity1", "Entity2" and "Value".
    • ignored_mappings_file: file in .tsv format but stores mappings that should be ignored by the evaluator.
    • train_map_ratio: proportion of training mappings to used in semi-supervised setting, default is 0.2.
    • val_map_ratio: proportion of validation mappings to used in semi-supervised setting, default is 0.1.
    • test_map_ratio: proportion of test mappings to used in semi-supervised setting, default is 0.7.
    • io_soft_neg_rate: number of soft negative sample for each positive sample generated in the fine-tuning data at the intra-ontology level.
    • io_hard_neg_rate: number of hard negative sample for each positive sample generated in the fine-tuning data at the intra-ontology level.
    • co_soft_neg_rate: number of soft negative sample for each positive sample generated in the fine-tuning data at the cross-ontology level.
    • depth_threshold: classes of depths larger than this threshold will not considered in hard negative generation, default is null.
    • depth_strategy: strategy to compute the depths of the classes if any threshold is set, default is max, choices are max and min.
  • bert
    • pretrained_path: real or huggingface library path for pretrained BERT, e.g. "emilyalsentzer/Bio_ClinicalBERT" (BioClinicalBERT).
    • tokenizer_path: real or huggingface library path for BERT tokenizer, e.g. "emilyalsentzer/Bio_ClinicalBERT" (BioClinicalBERT).
  • fine-tune
    • include_ids: include identity synonyms in the positive samples or not.
    • learning: choice of learning setting ss (semi-supervised) or us (unsupervised).
    • warm_up_ratio: portion of warm up steps.
    • max_length: maximum length for tokenizer (highly important for large task!).
    • num_epochs: number of training epochs, default is 3.0.
    • batch_size: batch size for fine-tuning BERT.
    • early_stop: whether or not to apply early stopping (patience has been set to 10), default is false.
    • resume_checkpoint: path to previous checkpoint if any, default is null.
  • map
    • candidate_limits: list of candidate limits used for mapping computation, suggested values are [25, 50, 100, 150, 200].
    • batch_size: batch size used for mapping computation.
    • nbest: number of top results to be considered.
    • string_match: whether or not to use string match before others.
    • strategy: strategy for classifier scoring method, default is mean.
  • eval:
    • automatic: whether or not automatically evaluate the mappings.

Should you need any further customizaions especially on the evaluation part, please set eval: automatic to false and use your own evaluation script.

Acknolwedgements

The repair module is credited to Ernesto Jiménez Ruiz et al., and the code can be found here.

Owner
KRR
Knowledge Representation and Reasoning Group - University of Oxford
KRR
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023