YOLOX Win10 Project

Overview

Introduction

这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改:

1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题

2、CUDA out of memory等显存不够问题

3、增加eval.txt,可以输出IoU=0.5-0.95的AP值,以及Map50和Map50:95

Benchmark

Model size mAPval
0.5:0.95
mAPtest
0.5:0.95
Speed V100
(ms)
Params
(M)
FLOPs
(G)
weights
YOLOX-s 640 40.5 40.5 9.8 9.0 26.8 github
YOLOX-m 640 46.9 47.2 12.3 25.3 73.8 github
YOLOX-l 640 49.7 50.1 14.5 54.2 155.6 github
YOLOX-x 640 51.1 51.5 17.3 99.1 281.9 github
YOLOX-Darknet53 640 47.7 48.0 11.1 63.7 185.3 github

Training on custom data

1、准备数据集

以VOC数据集为例,数据目录如下图所示,datasets/VOCdevkit/VOC2021/(不建议修改年份,如需要修改,则对应修改yolox_voc_s.py中的年份),该文件夹下有三个文件夹,分别为Annotations、JPEGImages、ImageSets,特别注意ImageSets文件夹下须新建Main文件夹,运行dataset_cls.py(注意切换到datasets路径下,可以修改训练集和测试集比例)会自动生成训练文件trainval.txttest.txt

2、修改配置文件

修改exps/example/yolox_voc/yolox_voc_s.py文件 self.num_classes和其他配置变量(自选)

class Exp(MyExp):
    def __init__(self):
        super(Exp, self).__init__()
        self.num_classes = 42         #修改成自己的类别
        self.depth = 0.33
        self.width = 0.50
        self.warmup_epochs = 1

此Exp类体继承MyExp类体,且可以对MyExp的变量重写(因此有更高的优先级),对按住ctrl点击MyExp跳转

class Exp(BaseExp):
    def __init__(self):
        super().__init__()

        # ---------------- model config ---------------- #
        self.num_classes = 80  #因为在yolox_voc_s.py中已经重新赋值,此处不用修改
        self.depth = 1.00
        self.width = 1.00
        self.act = 'silu'

        # ---------------- dataloader config ---------------- #
        # set worker to 4 for shorter dataloader init time
        self.data_num_workers = 1
        self.input_size = (640, 640)  # (height, width)
        # Actual multiscale ranges: [640-5*32, 640+5*32].
        # To disable multiscale training, set the
        # self.multiscale_range to 0.
        self.multiscale_range = 5 #五种输入大小随机调整
        # You can uncomment this line to specify a multiscale range
        # self.random_size = (14, 26)
        self.data_dir = None
        self.train_ann = "instances_train2017.json"
        self.val_ann = "instances_val2017.json"

        # --------------- transform config ----------------- #
        self.mosaic_prob = 1.0   #数据增强概率,可以根据需要调整
        self.mixup_prob = 1.0
        self.hsv_prob = 1.0
        self.flip_prob = 0.5
        self.degrees = 10.0
        self.translate = 0.1
        self.mosaic_scale = (0.1, 2)
        self.mixup_scale = (0.5, 1.5)
        self.shear = 2.0
        self.enable_mixup = True

        # --------------  training config --------------------- #
        self.warmup_epochs = 5
        self.max_epoch = 100  #设置训练轮数
        self.warmup_lr = 0
        self.basic_lr_per_img = 0.01 / 64.0
        self.scheduler = "yoloxwarmcos"
        self.no_aug_epochs = 15 #不适用数据增强轮数
        self.min_lr_ratio = 0.05
        self.ema = True

        self.weight_decay = 5e-4
        self.momentum = 0.9
        self.print_interval = 10 #每隔十步打印输出一次训练信息
        self.eval_interval = 1 #每隔1轮保存一次
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]

        # -----------------  testing config ------------------ #
        self.test_size = (640, 640)
        self.test_conf = 0.01
        self.nmsthre = 0.65

可以对上述类体变量进行调整,其中关键变量有input_size、max_epoch、eval_interval

3、开始训练

输入以下命令开始训练,-c 表示加载预训练权重

python tools/train.py  -c /path/to/yolox_s.pth

你也可以对其他参数进行调整,例如:

python tools/train.py  -d 1 -b 8 --fp16 -c /path/to/yolox_s.pth

-d 表示用几块显卡,-b 表示设置batch_size,--fp16 表示半精度训练,-c 表示加载预训练权重,如果在显存不足的情况下,谨慎输入 -o 参数,会占用较多显存

如果训练一半终止后,想继续断点训练,可以输入

python tools/train.py --resume

Evaluation

输入以下代码默认对精度最高模型评估,评估后,可以在YOLOX_outputs/yolox_voc_s/eval.txt中看到IoU=0.5-0.95的AP值,文件最后可以看到Map50Map50:95

python tools/eval.py

如需对设定其他参数,可以输入以下代码,参数意义同训练

python tools/eval.py -n  yolox-s -c yolox_s.pth -b 8 -d 1 --conf 0.001 
                         yolox-m
                         yolox-l
                         yolox-x

Reference

https://github.com/Megvii-BaseDetection/YOLOX

💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022