πŸ“– Deep Attentional Guided Image Filtering

Related tags

Deep LearningDAGF
Overview

πŸ“– Deep Attentional Guided Image Filtering

[Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji
Harbin Institute of Technology, Tsinghua University

Abstract

Guided filter is a fundamental tool in computer vision and computer graphics which aims to transfer structure information from guidance image to target image. Most existing methods construct filter kernels from the guidance itself without considering the mutual dependency between the guidance and the target. However, since there typically exist significantly different edges in the two images, simply transferring all structural information of the guidance to the target would result in various artifacts. To cope with this problem, we propose an effective framework named deep attentional guided image filtering, the filtering process of which can fully integrate the complementary information contained in both images. Specifically, we propose an attentional kernel learning module to generate dual sets of filter kernels from the guidance and the target, respectively, and then adaptively combine them by modeling the pixel-wise dependency between the two images. Meanwhile, we propose a multi-scale guided image filtering module to progressively generate the filtering result with the constructed kernels in a coarse-to-fine manner. Correspondingly, a multi-scale fusion strategy is introduced to reuse the intermediate results in the coarse-to-fine process. Extensive experiments show that the proposed framework compares favorably with the state-of-the-art methods in a wide range of guided image filtering applications, such as guided super-resolution, cross-modality restoration, texture removal, and semantic segmentation.


This repository is an official PyTorch implementation of the paper "Deep Attentional Guided Filtering"

πŸ”§ Dependencies and Installation

Installation

  1. Clone repo

    git https://github.com/zhwzhong/DAGF.git
    cd DAGF
  2. Install dependent packages

    pip install -r requirements.txt

Dataset

  1. NYU
  2. Lu
  3. Middlebury
  4. Sintel
  5. ToFMark
  6. DUT-OMRON

Trained Models

You can directly download the trained model and put it in checkpoints:

  • DAGF (Nearest):4, 8, 16
  • DAGF (Bicubic): 4, 8, 16

Train

You can also train by yourself:

 python main.py  --scale=16  --save_real --dataset_name='NYU' --model_name='DAGF'

Pay attention to the settings in the option (e.g. gpu id, model_name).

Test

We provide the processed test data in 'test_data' and pre-trained models in 'pre_trained' With the trained model, you can test and save depth images.

python quick_test.py

Acknowledgments

TO DO

  1. Release the trained models for compared models:
  2. Release the experimental resutls of the compared models.

πŸ… Our method won the Real DSR Challenge in ICMR 2021.

The detail information can be fond here.

πŸ“§ Contact

If you have any question, please email [email protected]

Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ΰ€‹ΰ€·ΰ€Ώΰ€•ΰ₯‡ΰ€Ά) 118 Dec 29, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022