Short and long time series classification using convolutional neural networks

Overview

time-series-classification

Short and long time series classification via convolutional neural networks

In this project, we present a novel framework for time series classification, which is based on Gramian Angular Summation/Difference Fields and Markov Transition Fields (GAF-MTF), a recently published image feature extraction method. A convolutional neural network (CNN) was employed as the classifier. This framework enables the use of CNN to learn high-level features and classify time series. Its performance was evaluated on 16 standard datasets. Experiment results show that our framework outperforms or achieves the same level at least with the GAF-MTF+Tiled CNN framework on 14 of the 16 datasets. And it obtained competitive performance compared with other 8 representive approaches. Furthermore, we compared the performance of GAF-MTF feature with other 5 image features on a large-scale cough dataset. Results indicates that the GAF-MTF feature is not suitable for large-scale cough datasets while its competitive performance on the standard datasets.

Image features extraction

Short time series

Image features for short time series:

  • GASF

- GADF

- MTF

Large-scale cough dataset

Image features for cough dataset:

  • Comparision of the six image features:

CNN

  • Framework for short time series classification:

- AlexNet/CaffeNet

Results

  • short time series classification:

- long time series classificaiton:

Appendix

Dataset information:

Software Links:

This project is partly motivated by @Zhiguang Wang, who is the author of "Imaging Time-Series to Improve Classification and Imputation". He provided me the source code to extract GASF-GADF-MTF features and pointed out that "The tiled CNN is not the best one and the TICA pre-training stage seems unnecessary". His advice helped us save a great deal of time. Thanks for his kindness and if you use this repository for GAF/MTF feature extraction, please cite the work in your publication:

@inproceedings{Wang:2015:ITI:2832747.2832798,
 author = {Wang, Zhiguang and Oates, Tim},
 title = {Imaging Time-series to Improve Classification and Imputation},
 booktitle = {Proceedings of the 24th International Conference on Artificial Intelligence},
 series = {IJCAI'15},
 year = {2015},
 isbn = {978-1-57735-738-4},
 location = {Buenos Aires, Argentina},
 pages = {3939--3945},
 numpages = {7},
 url = {http://dl.acm.org/citation.cfm?id=2832747.2832798},
 acmid = {2832798},
 publisher = {AAAI Press},
}

NOTE: The cough dataset used in this work can not be accessed now for some privacy issues!

DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022