A code generator from ONNX to PyTorch code

Overview

onnx-pytorch

Build Status

Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1.

Installation

  • From PyPI
pip install onnx-pytorch
  • From source
git clone https://github.com/fumihwh/onnx-pytorch.git
pip install -r requirements.txt
pip install -e .

Usage

from onnx_pytorch import code_gen
code_gen.gen("/path/to/onnx_model", "/path/to/output_dir")

A model.py file and variables folder will be created under output_dir.

Tutorial

  • Download resnet18 onnx model

wget https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet18-v2-7.onnx

  • Use onnx-pytorch to generate pytorch code and variables.
from onnx_pytorch import code_gen
code_gen.gen("resnet18-v2-7.onnx", "./")
  • Test result
import numpy as np
import onnx
import onnxruntime
import torch
torch.set_printoptions(8)

from model import Model

model = Model()
model.eval()
inp = np.random.randn(1, 3, 224, 224).astype(np.float32)
with torch.no_grad():
  torch_outputs = model(torch.from_numpy(inp))

onnx_model = onnx.load("resnet18-v2-7.onnx")
sess_options = onnxruntime.SessionOptions()
session = onnxruntime.InferenceSession(onnx_model.SerializeToString(),
                                       sess_options)
inputs = {"data": inp}
ort_outputs = session.run(None, inputs)

print(
    "Comparison result:",
    np.allclose(torch_outputs.detach().numpy(),
                ort_outputs[0],
                atol=1e-5,
                rtol=1e-5))
Comments
  • latest version of onnx or torch fails pytest

    latest version of onnx or torch fails pytest

    latest version of onnx or torch fails pytest: pip install onnx onnxruntime --upgrade produces Successfully installed onnx-1.10.2 onnxruntime-1.9.0

    which fails the pipeline

    ================================================================================================================================== test session starts ===================================================================================================================================
    platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0
    rootdir: <me>/Documents/travail/programs/onnx-pytorch
    plugins: dash-2.0.0
    collected 88 items                                                                                                                                                                                                                                                                       
    
    onnx_pytorch/tests/test_base.py .F.................F..................s.................................................                                                                                                                                                           [100%]
    
    ======================================================================================================================================== FAILURES ========================================================================================================================================
    _________________________________________________________________________________________________________________ TestBase.test_conv_batchnorm_maxpool_flatten_add_relu __________________________________________________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce8a666880>
    
        def test_conv_batchnorm_maxpool_flatten_add_relu(self):
          reset_model(13)
          nps = [np.random.randn(1, 3, 224, 224).astype(np.float32)]
          inputs = Input(*nps)
          conv_node = Conv(inputs[0],
                           np.random.randn(32, 3, 3, 3).astype(np.float32),
                           np.random.randn(32).astype(np.float32))
          bn_node = BatchNormalization(
              conv_node,
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          )
          max_pool_node = MaxPool(bn_node,
                                  kernel_shape=(3, 3),
                                  strides=(2, 2),
                                  pads=(0, 0, 1, 1))
          flatten_node = Flatten(max_pool_node, axis=1)
          add_node = Add(flatten_node, np.random.randn(1).astype(np.float32))
          relu_node = Relu(add_node)
          Output(relu_node)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:103: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce8a666880>
    inputs_np = [('_t_Input_0', array([[[[ 1.0018734 , -0.62048906,  1.2765806 , ...,  0.25725722,
              -1.1847678 ,  1.8534303 ]...     [-0.86980325, -0.2758593 ,  0.05530448, ...,  0.2182875 ,
               0.33060816,  0.6260562 ]]]], dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7fcee3f60550>(array([[1.3416731 , 0.8318468 , 0.6191998 , ..., 1.1701062 , 0.6089205 ,\n        0.57694536]], dtype=float32), array([[10.049213 ,  6.957016 ,  5.667273 , ..., 10.965231 ,  7.2742968,\n         7.0639963]], dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7fcee3f60550> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ----------------------------------------------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_Conv_0 = nn.Conv2d(**{'groups': 1, 'dilation': 1, 'out_channels': 32, 'padding': 0, 'kernel_size': (3, 3), 'stride': 1, 'in_channels': 3, 'bias': True})
        self.n_Conv_0.weight.data = self._vars["t_0"]
        self.n_Conv_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_2"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_3"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_4"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_5"]
        self.n_MaxPool_0 = nn.MaxPool2d(**{'dilation': 1, 'kernel_size': [3, 3], 'ceil_mode': False, 'stride': [2, 2], 'return_indices': True})
        self.n_Flatten_0 = nn.Flatten(**{'start_dim': 1})
    
      def forward(self, *inputs):
        t_7, = inputs
        t_8 = self.n_Conv_0(t_7)
        t_9 = self.n_BatchNormalization_0(t_8)
        t_9 = F.pad(t_9, [0, 1, 0, 1], value=float('-inf'))
        t_14, t_15 = self.n_MaxPool_0(t_9)
        t_16 = self.n_Flatten_0(t_14)
        t_17 = torch.add(t_16, self._vars["t_6"])
        t_18 = F.relu(t_17)
        return t_18
    
      def compatible_auto_pad(self, input, kernel_spatial_shape, nn_mod, auto_pad=None, **kwargs):
        input_spatial_shape = input.shape[2:]
        d = len(input_spatial_shape)
        strides = nn_mod.stride
        dilations = nn_mod.dilation
        output_spatial_shape = [math.ceil(float(l) / float(r)) for l, r in zip(input.shape[2:], strides)]
        pt_padding = [0] * 2 * d
        pad_shape = [0] * d
        for i in range(d):
          pad_shape[i] = (output_spatial_shape[i] - 1) * strides[i] + ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) - input_spatial_shape[i]
          mean = pad_shape[i] // 2
          if auto_pad == b"SAME_UPPER":
            l, r = pad_shape[i] - mean, mean
          else:
            l, r = mean, pad_shape[i] - mean
          pt_padding.insert(0, r)
          pt_padding.insert(0, l)
        return F.pad(input, pt_padding)
    
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 3, 224, 224]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[10.04921341,  6.95701599,  5.66727304,  ..., 10.96523094,
              7.27429676,  7.06399632]])
    ----------------------------------------------------------------------------------------------------------------------------------- Captured log call ------------------------------------------------------------------------------------------------------------------------------------
    WARNING  root:__init__.py:41 Cannot get default value for dilations of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for kernel_shape of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for pads of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for strides of MaxPool.
    WARNING  root:MaxPool.py:47 MaxPool with asymmetric padding will get incorrect indices.
    ___________________________________________________________________________________________________________________________ TestBase.test_batch_normalization ____________________________________________________________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce88ce44c0>
    
        def test_batch_normalization(self):
          reset_model(13)
          nps = [np.random.randn(1, 32, 3, 3).astype(np.float32)]
          inputs = Input(*nps)
          Output(BatchNormalization(
              inputs[0],
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          ),
                 output_num=1)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:239: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce88ce44c0>
    inputs_np = [('_t_Input_0', array([[[[ 6.35267049e-02,  5.02886951e-01, -6.22651100e-01],
             [ 1.44260633e+00,  1.56048670e-...51401734e-01,  5.14413416e-01],
             [-1.90268409e+00, -7.60383308e-02,  2.99409509e-01]]]],
          dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7fcee3f60550>(array([[[[-0.13030988,  0.44412366, -1.0274405 ],\n         [ 1.6727427 , -0.00934371, -0.14003941],\n         [ 1.48930...,\n         [ 0.7121257 , -0.5435372 ,  0.5330533 ],\n         [-1.9084809 , -0.06336791,  0.31587568]]]], dtype=float32), array([[[[ 1.03302915e-02,  4.43110734e-01, -6.65571392e-01],\n         [ 1.36875701e+00,  1.01466656e-01,  3.00002005e...8.79306126e+00,  1.40610695e+01],\n         [ 2.11407280e+00,  1.11426420e+01,  1.29983692e+01]]]],\n      dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7fcee3f60550> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ----------------------------------------------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_0"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_2"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_3"]
    
      def forward(self, *inputs):
        t_4, = inputs
        t_5 = self.n_BatchNormalization_0(t_4)
        return t_5
    
      
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 32, 3, 3]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[[[ 1.03302915e-02,  4.43110734e-01, -6.65571392e-01],
              [ 1.36875701e+00,  1.01466656e-01,  3.00002005e-03],
              [ 1.23055291e+00, -6.36751056e-01, -8.78339052e-01]],
    
             [[-4.64856595e-01,  1.01388752e+00,  2.45039845e+00],
              [-1.51369238e+00, -7.56639481e-01, -1.26973033e+00],
              [ 3.04206324e+00, -1.07024908e+00,  1.22984998e-01]],
    
             [[-2.69752383e-01, -9.64242399e-01, -2.14787436e+00],
              [-3.66215348e-01, -7.90006399e-01, -1.19138491e+00],
              [-6.34383440e-01,  4.39469069e-01, -1.50392938e+00]],
    
             [[ 5.44885218e-01,  1.98177516e+00,  2.14701653e+00],
              [ 2.57987189e+00,  6.98854351e+00,  5.21536064e+00],
              [-1.14435458e+00,  1.33780324e+00,  3.80742407e+00]],
    
             [[-1.26968300e+00, -4.35954601e-01,  5.31747639e-01],
              [-2.33643723e+00, -2.31319714e+00, -1.69136405e+00],
              [-1.01814747e+00, -1.30057871e+00,  1.37861446e-01]],
    
             [[-7.35616326e-01, -1.18806839e+00, -1.10327315e+00],
              [-1.21497869e+00,  2.44642749e-01, -1.08295512e+00],
              [-7.17091501e-01, -2.20478797e+00, -1.50086403e+00]],
    
             [[-3.56589526e-01, -1.32543945e+00, -3.12406365e-02],
              [-7.59021521e-01,  8.00770998e-01, -1.86119422e-01],
              [-2.47674465e-01,  3.34041089e-01,  4.68768179e-01]],
    
             [[-3.02949500e+00, -9.34190691e-01, -6.01976514e-01],
              [-1.39591777e+00,  9.02901888e-01, -1.70761660e-01],
              [-7.49238193e-01, -8.39863300e-01, -1.61441386e+00]],
    
             [[ 5.27461350e-01, -1.29779911e+00, -1.84558618e+00],
              [-1.37622201e+00, -2.75002476e-02, -4.80182886e-01],
              [-1.48854208e+00, -2.23460600e-01, -1.37674761e+00]],
    
             [[ 8.06057811e-01,  8.74002814e-01, -1.36947542e-01],
              [ 1.77069342e+00,  1.01755619e+00,  3.84808660e-01],
              [ 6.74725831e-01,  3.76408148e+00,  2.22828791e-01]],
    
             [[ 3.71400404e+00,  2.69624019e+00,  1.77703583e+00],
              [ 2.33299780e+00,  2.48477370e-01,  3.29037476e+00],
              [ 1.03505504e+00,  2.66409278e+00,  3.81201744e+00]],
    
             [[ 1.02166690e-01, -1.42813325e-01, -4.73593771e-01],
              [-2.43843883e-01,  4.17272627e-01,  8.99561644e-01],
              [-7.05574870e-01,  2.67669708e-01,  5.22894859e-01]],
    
             [[-1.17352533e+00, -5.71887255e-01, -3.19737315e-01],
              [-1.18356705e+00, -2.85988569e+00, -7.28449404e-01],
              [-1.39273572e+00, -1.43941092e+00, -4.75017697e-01]],
    
             [[-9.16496933e-01, -1.37783527e+00,  1.75405681e+00],
              [-2.10685277e+00, -1.30036724e+00,  2.50304151e+00],
              [ 3.88478422e+00,  8.30973566e-01,  3.44308519e+00]],
    
             [[-1.08552837e+00, -1.35483885e+00,  9.10718501e-01],
              [ 7.22618103e-01, -3.82872492e-01,  3.09645385e-01],
              [ 1.25192356e+00,  1.48433483e+00, -7.20467627e-01]],
    
             [[ 2.90476012e+00,  2.38905120e+00,  3.20962930e+00],
              [ 4.72063154e-01,  1.03854692e+00,  1.42332995e+00],
              [-2.65931457e-01,  2.61525941e+00,  1.36843193e+00]],
    
             [[ 2.29905200e+00,  7.33413887e+00, -2.16392994e+01],
              [-9.26441479e+00, -4.63282776e+00,  8.38395882e+00],
              [-6.14768124e+00, -1.39623775e+01, -5.33043909e+00]],
    
             [[-1.18203115e+00,  7.83545434e-01, -1.33013463e+00],
              [ 1.55748868e+00,  2.99707323e-01, -1.74411178e-01],
              [-3.15904379e-01, -1.27137268e+00,  2.87169278e-01]],
    
             [[ 2.82064867e+00, -3.11068088e-01, -7.12420881e-01],
              [ 1.99217871e-01,  8.75358164e-01,  5.74787557e-01],
              [ 1.21458745e+00,  1.32562840e+00,  1.46251321e-01]],
    
             [[-2.08626246e+00, -1.01060474e+00, -1.84688258e+00],
              [-1.30853727e-01, -7.70996749e-01,  7.53721535e-01],
              [ 1.19904697e+00, -1.62641481e-01, -8.22388411e-01]],
    
             [[ 1.33589315e+00,  3.14021409e-01,  2.48438573e+00],
              [-2.21844530e+00,  5.82929230e+00,  2.27573776e+00],
              [ 5.50253439e+00,  2.19331694e+00,  4.72958851e+00]],
    
             [[-1.88447189e+00, -9.36176181e-01, -1.94018316e+00],
              [-1.43561804e+00, -4.47861242e+00, -3.19850969e+00],
              [-9.75790977e-01, -2.53019547e+00, -2.31218606e-01]],
    
             [[ 1.56031847e+00, -8.49840164e-01,  2.18206739e+00],
              [ 1.86757004e+00, -9.00376320e-01, -3.14888433e-02],
              [-2.60793537e-01,  3.81440073e-01,  1.87343729e+00]],
    
             [[-2.49012423e+00, -1.80255661e+01, -1.39246368e+01],
              [-7.12090111e+00, -1.14031210e+01, -3.02313328e+00],
              [-5.08311844e+00, -7.04758024e+00, -8.73173904e+00]],
    
             [[-3.17438930e-01, -5.40359974e-01, -8.29769790e-01],
              [-2.39079952e+00, -7.72985220e-01, -1.00527453e+00],
              [-4.49523091e-01, -1.43823814e+00, -8.15485835e-01]],
    
             [[-1.75956070e+00, -3.46495295e+00, -5.70724130e-01],
              [-1.35396278e+00, -1.52985775e+00, -9.15392518e-01],
              [ 1.32145539e-01, -1.15701056e+00, -3.28669786e+00]],
    
             [[ 9.83868241e-01,  1.86329472e+00,  3.16185784e+00],
              [ 3.53541660e+00,  3.46067637e-01, -4.36942726e-01],
              [ 8.96343887e-01,  1.15589023e+00,  1.66808695e-01]],
    
             [[ 1.45385325e+00, -2.57331681e+00,  2.47062397e+00],
              [ 5.09636497e+00, -4.55582333e+00,  6.47839642e+00],
              [ 6.10593510e+00,  8.07678998e-01,  2.03531766e+00]],
    
             [[-7.87889004e+00,  2.15410185e+00, -1.72434068e+00],
              [-4.13584518e+00, -5.07564878e+00, -7.04525948e+00],
              [-4.00902462e+00,  6.43981886e+00,  4.90088892e+00]],
    
             [[-8.97298872e-01, -6.58248663e-01,  3.97185832e-01],
              [ 1.26078165e+00, -5.88805914e-01, -1.58723903e+00],
              [ 1.83342293e-01,  5.42823195e-01, -8.95587146e-01]],
    
             [[-2.58091998e+00,  1.56836367e+00,  4.73235160e-01],
              [ 6.95867360e-01,  3.10397220e+00,  8.56488526e-01],
              [-5.79270065e-01, -1.23413563e+00,  2.25809479e+00]],
    
             [[ 1.47533607e+01,  5.50610733e+00,  1.87684441e+01],
              [ 1.49373131e+01,  8.79306126e+00,  1.40610695e+01],
              [ 2.11407280e+00,  1.11426420e+01,  1.29983692e+01]]]])
    ==================================================================================================================================== warnings summary ====================================================================================================================================
    ../../../../anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        int(TensorProto.STRING): np.dtype(np.object)
    
    onnx_pytorch/tests/test_base.py: 186 warnings
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/numpy_helper.py:93: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        if arr.dtype == np.object:
    
    onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/helper.py:365: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
        is_iterable = isinstance(value, collections.Iterable)
    
    onnx_pytorch/tests/test_base.py::TestBase::test_and
    onnx_pytorch/tests/test_base.py::TestBase::test_and
      /tmp/tmpdcjl7rk5/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_non_zero
      /tmp/tmpxjta2pa8/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_resize_downsample_sizes_linear_pytorch_half_pixel
    onnx_pytorch/tests/test_base.py::TestBase::test_resize_pt_bilinear
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/torch/nn/functional.py:3454: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
        warnings.warn(
    
    -- Docs: https://docs.pytest.org/en/stable/warnings.html
    ================================================================================================================================ short test summary info =================================================================================================================================
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu - assert False
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_batch_normalization - assert False
    ================================================================================================================= 2 failed, 85 passed, 1 skipped, 193 warnings in 1.50s ==================================================================================================================
    
    opened by helion-du-mas-des-bourboux-thales 3
  • Function `code_gen.gen` failed with layer `LayerNormalization`. However, `BatchNormalization` succeeds.

    Function `code_gen.gen` failed with layer `LayerNormalization`. However, `BatchNormalization` succeeds.

    This is ipython code (at colab) which makes an error.

    Code

    !pip install tensorflow==2.6.4 onnx==1.12.0 onnx-pytorch git+https://github.com/onnx/tensorflow-onnx
    
    import tensorflow as tf
    import onnx
    
    from onnx_pytorch import code_gen
    
    with tf.device("/cpu:0"):
        tf_model = tf.keras.Sequential()
        tf_model.add(tf.keras.layers.Input((123,)))
        tf_model.add(tf.keras.layers.LayerNormalization())
        tf.keras.models.save_model(
            tf_model,
            "model.tf",
            overwrite=True,
            include_optimizer=False,
            save_format=None,
            signatures=None,
            options=None,
            save_traces=True
        )
    !python -m tf2onnx.convert --saved-model model.tf --output model.onnx --opset 11 --verbose
    code_gen.gen("model.onnx", "./")
    

    Error Message

    ---------------------------------------------------------------------------
    NotImplementedError                       Traceback (most recent call last)
    [<ipython-input-8-b7c6a94144c8>](https://localhost:8080/#) in <module>()
         21     )
         22 get_ipython().system('python -m tf2onnx.convert --saved-model model.tf --output model.onnx --opset 11 --verbose')
    ---> 23 code_gen.gen("model.onnx", "./")
    
    1 frames
    [/usr/local/lib/python3.7/dist-packages/onnx_pytorch/code_gen.py](https://localhost:8080/#) in gen(onnx_model, output_dir, overwrite, tensor_inplace, simplify_names, continue_on_error, embedding_conf_file, shape_infer)
        289       onnx_model, output_dir, overwrite, tensor_inplace, simplify_names,
        290       continue_on_error, embedding_conf_file, shape_infer)
    --> 291   model_code_generator.run()
        292 
        293 
    
    [/usr/local/lib/python3.7/dist-packages/onnx_pytorch/code_gen.py](https://localhost:8080/#) in run(self)
        245         else:
        246           raise NotImplementedError(
    --> 247               f"OpCodeGenerator is unimplemented for {n.op_type}.")
        248       else:
        249         try:
    
    NotImplementedError: OpCodeGenerator is unimplemented for ReduceSumSquare.
    
    opened by klae01 2
  • latest onnxruntime fails test

    latest onnxruntime fails test

    onnxruntime==1.9.0

    (onnx-pytorch) <me>:<me>/onnx-pytorch$ pytest onnx_pytorch/tests/test_base.py 
    =============================================================================================== test session starts ===============================================================================================
    platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0
    rootdir: <me>//onnx-pytorch
    plugins: dash-2.0.0
    collected 88 items                                                                                                                                                                                                
    
    onnx_pytorch/tests/test_base.py .F.................F..................s...........................s.....................                                                                                    [100%]
    
    ==================================================================================================== FAILURES =====================================================================================================
    ______________________________________________________________________________ TestBase.test_conv_batchnorm_maxpool_flatten_add_relu ______________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7aa0349d90>
    
        def test_conv_batchnorm_maxpool_flatten_add_relu(self):
          reset_model(13)
          nps = [np.random.randn(1, 3, 224, 224).astype(np.float32)]
          inputs = Input(*nps)
          conv_node = Conv(inputs[0],
                           np.random.randn(32, 3, 3, 3).astype(np.float32),
                           np.random.randn(32).astype(np.float32))
          bn_node = BatchNormalization(
              conv_node,
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          )
          max_pool_node = MaxPool(bn_node,
                                  kernel_shape=(3, 3),
                                  strides=(2, 2),
                                  pads=(0, 0, 1, 1))
          flatten_node = Flatten(max_pool_node, axis=1)
          add_node = Add(flatten_node, np.random.randn(1).astype(np.float32))
          relu_node = Relu(add_node)
          Output(relu_node)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:103: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7aa0349d90>
    inputs_np = [('_t_Input_0', array([[[[ 0.08681966,  0.31802994, -0.46221298, ...,  0.86617213,
              -0.37778926, -0.6164783 ]...     [-0.22646298, -0.44820276, -0.9840031 , ...,  0.5185814 ,
               1.3545119 , -0.98803467]]]], dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7f7b043f61f0>(array([[1.2242965 , 0.41702545, 0.28294265, ..., 0.12723899, 0.12723899,\n        0.        ]], dtype=float32), array([[5.1290994, 2.8178134, 2.4339228, ..., 7.237103 , 7.237103 ,\n        0.       ]], dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7f7b043f61f0> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------- Captured stdout call -----------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_Conv_0 = nn.Conv2d(**{'groups': 1, 'dilation': 1, 'out_channels': 32, 'padding': 0, 'kernel_size': (3, 3), 'stride': 1, 'in_channels': 3, 'bias': True})
        self.n_Conv_0.weight.data = self._vars["t_0"]
        self.n_Conv_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_2"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_3"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_4"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_5"]
        self.n_MaxPool_0 = nn.MaxPool2d(**{'dilation': 1, 'kernel_size': [3, 3], 'ceil_mode': False, 'stride': [2, 2], 'return_indices': True})
        self.n_Flatten_0 = nn.Flatten(**{'start_dim': 1})
    
      def forward(self, *inputs):
        t_7, = inputs
        t_8 = self.n_Conv_0(t_7)
        t_9 = self.n_BatchNormalization_0(t_8)
        t_9 = F.pad(t_9, [0, 1, 0, 1], value=float('-inf'))
        t_14, t_15 = self.n_MaxPool_0(t_9)
        t_16 = self.n_Flatten_0(t_14)
        t_17 = torch.add(t_16, self._vars["t_6"])
        t_18 = F.relu(t_17)
        return t_18
    
      def compatible_auto_pad(self, input, kernel_spatial_shape, nn_mod, auto_pad=None, **kwargs):
        input_spatial_shape = input.shape[2:]
        d = len(input_spatial_shape)
        strides = nn_mod.stride
        dilations = nn_mod.dilation
        output_spatial_shape = [math.ceil(float(l) / float(r)) for l, r in zip(input.shape[2:], strides)]
        pt_padding = [0] * 2 * d
        pad_shape = [0] * d
        for i in range(d):
          pad_shape[i] = (output_spatial_shape[i] - 1) * strides[i] + ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) - input_spatial_shape[i]
          mean = pad_shape[i] // 2
          if auto_pad == b"SAME_UPPER":
            l, r = pad_shape[i] - mean, mean
          else:
            l, r = mean, pad_shape[i] - mean
          pt_padding.insert(0, r)
          pt_padding.insert(0, l)
        return F.pad(input, pt_padding)
    
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 3, 224, 224]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[5.12909937, 2.81781340, 2.43392277,  ..., 7.23710299, 7.23710299,
             0.00000000]])
    ------------------------------------------------------------------------------------------------ Captured log call ------------------------------------------------------------------------------------------------
    WARNING  root:__init__.py:41 Cannot get default value for dilations of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for kernel_shape of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for pads of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for strides of MaxPool.
    WARNING  root:MaxPool.py:47 MaxPool with asymmetric padding will get incorrect indices.
    ________________________________________________________________________________________ TestBase.test_batch_normalization ________________________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7a9eacfa00>
    
        def test_batch_normalization(self):
          reset_model(13)
          nps = [np.random.randn(1, 32, 3, 3).astype(np.float32)]
          inputs = Input(*nps)
          Output(BatchNormalization(
              inputs[0],
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          ),
                 output_num=1)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:239: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7a9eacfa00>
    inputs_np = [('_t_Input_0', array([[[[ 0.7745172 , -1.4926829 , -1.6556902 ],
             [-0.7622266 ,  0.04088752,  0.83572936],
      ...         [ 0.5896988 , -0.8963601 ,  0.9315137 ],
             [-1.5789044 , -0.9300383 , -0.8664075 ]]]], dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7f7b043f61f0>(array([[[[ 9.91475940e-01, -1.39311564e+00, -1.56456316e+00],\n         [-6.24837637e-01,  2.19860300e-01,  1.05585766e...7.59569287e-01,  1.25005341e+00],\n         [-1.50998020e+00, -7.96596169e-01, -7.26638436e-01]]]],\n      dtype=float32), array([[[[ 2.11514905e-02, -1.92307127e+00, -2.06285715e+00],\n         [-1.29667318e+00, -6.07967854e-01,  7.36436024e...8.19936633e-01,  1.26697469e+00],\n         [-1.59920776e+00, -8.58387530e-01, -7.85739303e-01]]]],\n      dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7f7b043f61f0> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------- Captured stdout call -----------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_0"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_2"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_3"]
    
      def forward(self, *inputs):
        t_4, = inputs
        t_5 = self.n_BatchNormalization_0(t_4)
        return t_5
    
      
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 32, 3, 3]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[[[ 2.11514905e-02, -1.92307127e+00, -2.06285715e+00],
              [-1.29667318e+00, -6.07967854e-01,  7.36436024e-02],
              [-1.24425519e+00, -4.32142057e-03, -4.06830050e-02]],
    
             [[ 4.27835196e-01, -4.02293563e-01,  1.25209391e+00],
              [-1.35146415e+00, -2.52955347e-01,  1.47779858e+00],
              [-6.49659276e-01,  4.79720533e-01,  2.22885060e+00]],
    
             [[-2.09176064e+00, -1.05400944e+00, -2.06602669e+00],
              [-1.94747806e+00, -2.88019228e+00, -2.62886310e+00],
              [-3.44989538e+00, -2.75009131e+00, -2.39562416e+00]],
    
             [[ 1.11013091e+00,  1.28344691e+00, -6.32941604e-01],
              [ 7.57854998e-01, -2.10156515e-01,  1.47328424e+00],
              [-2.59426326e-01, -2.84430325e-01,  9.00919676e-01]],
    
             [[ 4.08791155e-01,  2.89755702e-01,  6.62197396e-02],
              [-1.76871634e+00, -5.03794849e-01, -4.27903265e-01],
              [ 9.95307684e-01, -4.92222719e-02, -1.14720094e+00]],
    
             [[-1.45369780e+00,  2.33676344e-01, -1.03255248e+00],
              [ 1.32926130e+00,  2.23724812e-01, -2.06382227e+00],
              [-7.27365375e-01, -3.29207569e-01, -1.84505939e+00]],
    
             [[-7.30695367e-01, -9.48697507e-01,  1.02768219e+00],
              [-3.11210537e+00, -2.19822788e+00,  1.94993824e-01],
              [-5.17953396e-01,  9.80266273e-01,  1.58678629e-02]],
    
             [[-5.50329685e-01, -2.20515108e+00,  5.57632744e-01],
              [-4.76857811e-01,  1.53507262e-01, -1.43097568e+00],
              [ 4.82103467e-01, -1.68012989e+00,  3.24517749e-02]],
    
             [[-5.33442855e-01,  5.51209152e-01,  9.62817371e-01],
              [ 2.40877175e+00,  1.32837451e+00,  1.65606558e+00],
              [-4.13032651e-01,  3.72783518e+00,  3.40976954e-01]],
    
             [[ 6.73895895e-01, -2.66826779e-01,  2.70163131e+00],
              [ 1.51779735e+00,  1.03770292e+00,  3.58062625e-01],
              [ 3.07913351e+00,  1.82803762e+00,  1.80789387e+00]],
    
             [[-5.71182489e-01, -9.17714715e-01, -1.13700569e+00],
              [-1.86594054e-01, -3.26027721e-01, -7.83864677e-01],
              [-8.37005913e-01, -1.44201532e-01, -1.28018081e+00]],
    
             [[-2.11968374e+00,  4.36148047e-01, -2.25281045e-01],
              [-2.65030837e+00, -2.46051192e+00, -7.95132637e-01],
              [-2.29407355e-01, -2.05399799e+00, -3.97852802e+00]],
    
             [[ 1.99362409e+00, -2.22769213e+00,  3.03191710e+00],
              [ 6.41038036e+00,  7.57672191e-01,  2.30211586e-01],
              [ 4.41129446e+00,  5.71550274e+00,  2.88953924e+00]],
    
             [[-1.67502999e+00,  4.71590012e-01,  4.20928180e-01],
              [ 1.42629158e+00,  2.22070456e+00, -2.48521614e+00],
              [-2.90164924e+00, -1.70486748e+00,  3.05718213e-01]],
    
             [[ 1.31291842e+00,  1.51544333e+00,  9.34356451e-01],
              [ 2.45068908e+00,  9.35024202e-01,  1.16957915e+00],
              [ 1.73736286e+00,  1.44560516e+00,  1.79951024e+00]],
    
             [[-1.78257480e-01, -1.50668001e+00, -3.93693089e-01],
              [ 9.00940716e-01,  1.75067687e+00,  1.56921744e-01],
              [-1.68945998e-01, -7.10348845e-01,  2.69243687e-01]],
    
             [[-1.44925761e+00, -8.86168003e-01, -2.19026709e+00],
              [-5.69859803e-01,  6.73547387e-01, -1.53828010e-01],
              [-3.62083554e+00, -1.68905407e-02, -1.03936875e+00]],
    
             [[-2.79535174e+00, -3.87425613e+00,  4.66894388e+00],
              [-3.84637070e+00, -1.71726680e+00, -3.25723600e+00],
              [-6.84032822e+00, -1.06125496e-01,  2.27101946e+00]],
    
             [[ 9.65043604e-01, -3.17505288e+00,  1.14182040e-01],
              [-2.67569017e+00,  1.84636426e+00, -7.68563211e-01],
              [-2.11804008e+00, -2.63963199e+00, -2.71025586e+00]],
    
             [[-4.97454464e-01, -1.84077692e+00, -1.13075355e-03],
              [-2.12281924e-02,  1.43575883e+00, -9.79906857e-01],
              [-1.43173182e+00, -1.10443759e+00, -1.83555901e+00]],
    
             [[ 6.83952451e-01,  3.86664987e+00,  6.27903759e-01],
              [ 6.22224391e-01,  3.38052392e+00,  2.65812469e+00],
              [ 1.35363007e+00, -1.32484972e+00,  2.16152740e+00]],
    
             [[-2.97609538e-01, -5.97289562e-01, -5.53929061e-02],
              [-9.01254416e-01, -1.31918341e-01, -1.91106975e+00],
              [ 1.30615933e-02, -1.13118947e+00, -1.71910405e+00]],
    
             [[-3.56180477e+00,  1.03958499e+00, -2.59528255e+00],
              [-3.63754392e-01,  1.45368779e+00,  6.28106117e-01],
              [-1.52019906e+00,  2.27045107e+00, -2.04589820e+00]],
    
             [[ 2.96379948e+00,  1.40205872e+00,  6.10626042e-01],
              [ 9.29273069e-01, -2.59484500e-01,  1.29350579e+00],
              [-2.03710818e+00,  2.09723279e-01,  3.75842363e-01]],
    
             [[ 1.15190208e+00, -1.79379475e+00, -1.03870857e+00],
              [-2.49877191e+00,  5.20503461e-01, -1.32148862e+00],
              [ 1.14259291e+00, -1.22499466e+00, -1.77996016e+00]],
    
             [[ 5.53968525e+00,  2.88090467e+00,  1.01117289e+00],
              [ 5.58917379e+00,  6.44941425e+00,  4.39829063e+00],
              [ 5.66234684e+00,  6.48445272e+00,  7.14439631e+00]],
    
             [[ 2.75992036e-01,  2.69333333e-01,  2.09721066e-02],
              [-3.83876115e-01, -8.62384975e-01, -9.11671594e-02],
              [ 6.93263173e-01,  1.74463049e-01,  4.79215592e-01]],
    
             [[-1.01199875e+01, -7.20881653e+00, -5.04845047e+00],
              [-6.25630283e+00, -1.05240383e+01, -2.73052502e+00],
              [-7.76849747e+00, -2.49891591e+00, -8.07278156e+00]],
    
             [[ 1.54215002e+00,  1.09585929e+00,  1.14009336e-01],
              [ 1.12563217e+00,  2.39603353e+00,  1.73558319e+00],
              [-3.81684572e-01,  5.00159383e-01,  1.24173117e+00]],
    
             [[-1.65010154e-01, -5.65712094e-01,  3.59763801e-02],
              [-3.90798420e-01, -1.16110936e-01, -1.36400402e-01],
              [-1.34565961e+00,  4.39721853e-01,  8.28600407e-01]],
    
             [[-4.84672832e+00, -6.60604596e-01,  1.73845172e-01],
              [-5.31565666e-01, -1.43216908e-01,  3.46095473e-01],
              [-2.08822680e+00, -1.05168688e+00, -1.98360145e-01]],
    
             [[ 1.07395852e+00,  1.13209188e+00, -5.66867292e-01],
              [ 8.76719356e-01, -8.19936633e-01,  1.26697469e+00],
              [-1.59920776e+00, -8.58387530e-01, -7.85739303e-01]]]])
    ================================================================================================ warnings summary =================================================================================================
    ../../../../anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        int(TensorProto.STRING): np.dtype(np.object)
    
    onnx_pytorch/tests/test_base.py: 182 warnings
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/numpy_helper.py:93: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        if arr.dtype == np.object:
    
    onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/helper.py:365: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
        is_iterable = isinstance(value, collections.Iterable)
    
    onnx_pytorch/tests/test_base.py::TestBase::test_and
    onnx_pytorch/tests/test_base.py::TestBase::test_and
      /tmp/tmpms_osm8m/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_non_zero
      /tmp/tmpjqh2vsx2/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_resize_pt_bilinear
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/torch/nn/functional.py:3631: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
        warnings.warn(
    
    -- Docs: https://docs.pytest.org/en/stable/warnings.html
    ============================================================================================= short test summary info =============================================================================================
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu - assert False
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_batch_normalization - assert False
    ============================================================================== 2 failed, 84 passed, 2 skipped, 188 warnings in 1.47s ==============================================================================
    
    
    opened by helion-du-mas-des-bourboux-thales 2
  • Tensors in the converted model are being placed in the wrong device

    Tensors in the converted model are being placed in the wrong device

    I've converted a BiT model (https://tfhub.dev/google/bit/m-r101x1/1) from TF to ONNX, and then used this package to convert to Pytorch.

    The result works out-of-the-box in the CPU, I get the same outputs as the TF model. But when I try it in the GPU, I get some fatal errors saying that some ops are using tensors in different devices. Looking into the generated code, I see a lot of calls like these in forward(): t_323 = torch.tensor(t_321.shape)

    These are being created in the CPU, so operations with these tensors (when the input is in the GPU) result in error. I can fix it manually by changing all such calls to: torch.tensor(..., device=inputs[0].device), and then everything works well: the results are the same as TF, and the performance is also the same.

    opened by jorgemcgomes 2
  • change directory is missing

    change directory is missing

    https://github.com/fumihwh/onnx-pytorch/blob/29cd1dafb47e4e4bc598c700c44f53815e7b8c9a/README.md?plain=1#L19

    the command line block should be

    git clone https://github.com/fumihwh/onnx-pytorch.git
    cd onnx-pytorch
    pip install -r requirements.txt
    pip install -e .
    
    opened by londumas 1
  • input name in onnxruntime is hardcoded in README

    input name in onnxruntime is hardcoded in README

    https://github.com/fumihwh/onnx-pytorch/blob/29cd1dafb47e4e4bc598c700c44f53815e7b8c9a/README.md?plain=1#L87

    I would suggest changing the following line

    inputs = {"data": inp}
    

    to this one, in the README

    inputs = {session.get_inputs()[0].name: inp}
    

    This allows to adapt to a way larger variety of model, without hardcoding the input name.

    opened by londumas 1
  • DecodeError: Unexpected end-group tag.

    DecodeError: Unexpected end-group tag.

    Hi, I tried this tool for the first time

    I did it the following way:

    1. pip install onnx_pytorch
    2. from onnx_pytorch import code_gen

    3. code_gen.gen('resnet18-v2-7.onnx', './')

    But, there is an error about: DecodeError: Unexpected end-group tag.

    How to deal it?

    opened by xiaopengaia 1
  • OpCodeGenerator is unimplemented for Softplus

    OpCodeGenerator is unimplemented for Softplus

    When trying to convert a Yolov4 ONNX model with onnx-pytorch I get the following error. Seems to be an unimplemented OpCode for Softplus.

    WARNING:root:Cannot get default value for dilations of Conv. WARNING:root:Cannot get default value for kernel_shape of Conv. WARNING:root:Cannot get default value for pads of Conv. WARNING:root:Cannot get default value for strides of Conv. Traceback (most recent call last): File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/someenv/lib/python3.8/site-packages/onnx_pytorch/code_gen.py", line 378, in main() File "/someenv/python3.8/site-packages/onnx_pytorch/code_gen.py", line 368, in main gen(onnx_model=args.onnx_model_path, File "/someenv/python3.8/site-packages/onnx_pytorch/code_gen.py", line 291, in gen model_code_generator.run() File "/someenv/python3.8/site-packages/onnx_pytorch/code_gen.py", line 246, in run raise NotImplementedError( NotImplementedError: OpCodeGenerator is unimplemented for Softplus.

    Installed version:

    pip show onnx_pytorch Name: onnx-pytorch Version: 0.1.4 Summary: Convert ONNX to PyTorch code. Home-page: https://github.com/fumihwh/onnx-pytorch Author: fumihwh Author-email: [email protected] License: Apache 2.0 Location: /someenv/lib/python3.8/site-packages Requires: torchvision, setuptools, torch, PyYAML, tqdm, onnxruntime, onnx, sympy, pytest, numpy Required-by:

    opened by juhan 1
  • NotImplementedError: OpCodeGenerator is unimplemented for DequantizeLinear.

    NotImplementedError: OpCodeGenerator is unimplemented for DequantizeLinear.

    opened by LiuFeiOne 1
Releases(v0.1.5)
  • v0.1.5(Aug 3, 2022)

    What's Changed

    • create python publish action by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/42

    Full Changelog: https://github.com/fumihwh/onnx-pytorch/compare/v0.1.4...v0.1.5

    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Nov 23, 2021)

    What's Changed

    • Add some ops by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/13
    • Bump up to 0.1.3 by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/14
    • Add ops and model test cases by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/15
    • Support frcnn by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/16
    • Support mask rcnn, ssd and style transfer models by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/17
    • refactor: Small readability improvements by @rogier-stegeman in https://github.com/fumihwh/onnx-pytorch/pull/4
    • Fix CI by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/25
    • Some nit by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/24
    • add OP Elu/Sub/Tanh by @maimaixiong in https://github.com/fumihwh/onnx-pytorch/pull/19
    • Adds device information when creating new tensors by @jorgemcgomes in https://github.com/fumihwh/onnx-pytorch/pull/29
    • Ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/40
    • add version by @helion-du-mas-des-bourboux-thales in https://github.com/fumihwh/onnx-pytorch/pull/33
    • more general tutorial by @helion-du-mas-des-bourboux-thales in https://github.com/fumihwh/onnx-pytorch/pull/37
    • Fix dependencies by @helion-du-mas-des-bourboux-thales in https://github.com/fumihwh/onnx-pytorch/pull/35
    • Release 0.1.4 by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/41

    New Contributors

    • @rogier-stegeman made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/4
    • @maimaixiong made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/19
    • @jorgemcgomes made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/29
    • @helion-du-mas-des-bourboux-thales made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/33

    Full Changelog: https://github.com/fumihwh/onnx-pytorch/compare/v0.1.3...v0.1.4

    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Nov 18, 2021)

    What's Changed

    • Develop by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/1
    • Add tutorial and fix some bugs by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/2
    • Bump up to 0.1.2 by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/3
    • Introduce new features and some bug fix by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/5
    • Ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/6
    • Add some ops by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/7
    • Improve ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/8
    • Add some ops by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/9
    • Fix ops and use ParameterDict by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/10
    • Ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/11

    Full Changelog: https://github.com/fumihwh/onnx-pytorch/compare/v0.1.2...v0.1.3

    Source code(tar.gz)
    Source code(zip)
Owner
Wenhao Hu
Wenhao Hu
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021