Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Overview

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

This repository is the official implementation of [Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification] (to appear in the proceedings of NIPS'21).

Requirements

To install requirements (Python 3.6.9):

python3 -m pip install -r requirements.txt

Getting started

Reproduce results from the paper

In order to run ExperimentXXX in the paper, do as follows

  • Run command
cd experiments_scripts/
./ExperimentXXX.sh
  • That starts the computation, when it is done, the following files are present in the results/ folder

    • ExperimentXXX/method=[algorithm]_[list of options = values].csv

      Contains a matrix of 3 columns ("complexity": number of sampled arms, "regret": error in identification, "linearity": 1 if the algorithm considers data as linear, 0 otherwise, "running time": time in seconds for running the iteration) and XXX rows (controlled by parameter n_simu in the command) corresponding to each iteration of the algorithm.

    • ExperimentXXX/method=[algorithm]_[list of options = values]-emp_rec.csv

      Contains a matrix of XXX columns (number of arms in the experiment, controlled by parameter K in the command), and two rows, first row being the names of the arms, and the second one being the percentage of the time a given arm was returned in the set of good arms across iterations.

    • ExperimentXXX/params.json

      Saves in a JSON file the parameters set in the call to the code.

  • PNG file ExperimentXXX/boxplot.png is created in folder boxplots/

You can only run the code to plot the boxplot from a previously run ExperimentXXX

  • Run command
cd experiments_scripts
./ExperimentXXX.sh boxplot

ExperimentXXX won't be run, but if the corresponding results folder is present, then it creates the boxplot in folder boxplots/ExperimentXXX

Run

Have a look at file code/main.py to see the arguments needed.

Add new elements of code

  • Add a new bandit by creating a new instance of class Misspecified in file code/misspecified.py
  • Add a new dataset by adding a few lines of code to file code/data.py
  • Add new types of rewards by creating a new instance of class problem in file code/problems.py
  • Add new types of online learners by creating a new instance of class Learner in file code/learners.py

Results

Please refer to the paper.

Contributing

All of the code is under MIT license. Everyone is most welcome to submit pull requests.

Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Matthew Colbrook 1 Apr 08, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022