Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Overview

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

This repository is the official implementation of [Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification] (to appear in the proceedings of NIPS'21).

Requirements

To install requirements (Python 3.6.9):

python3 -m pip install -r requirements.txt

Getting started

Reproduce results from the paper

In order to run ExperimentXXX in the paper, do as follows

  • Run command
cd experiments_scripts/
./ExperimentXXX.sh
  • That starts the computation, when it is done, the following files are present in the results/ folder

    • ExperimentXXX/method=[algorithm]_[list of options = values].csv

      Contains a matrix of 3 columns ("complexity": number of sampled arms, "regret": error in identification, "linearity": 1 if the algorithm considers data as linear, 0 otherwise, "running time": time in seconds for running the iteration) and XXX rows (controlled by parameter n_simu in the command) corresponding to each iteration of the algorithm.

    • ExperimentXXX/method=[algorithm]_[list of options = values]-emp_rec.csv

      Contains a matrix of XXX columns (number of arms in the experiment, controlled by parameter K in the command), and two rows, first row being the names of the arms, and the second one being the percentage of the time a given arm was returned in the set of good arms across iterations.

    • ExperimentXXX/params.json

      Saves in a JSON file the parameters set in the call to the code.

  • PNG file ExperimentXXX/boxplot.png is created in folder boxplots/

You can only run the code to plot the boxplot from a previously run ExperimentXXX

  • Run command
cd experiments_scripts
./ExperimentXXX.sh boxplot

ExperimentXXX won't be run, but if the corresponding results folder is present, then it creates the boxplot in folder boxplots/ExperimentXXX

Run

Have a look at file code/main.py to see the arguments needed.

Add new elements of code

  • Add a new bandit by creating a new instance of class Misspecified in file code/misspecified.py
  • Add a new dataset by adding a few lines of code to file code/data.py
  • Add new types of rewards by creating a new instance of class problem in file code/problems.py
  • Add new types of online learners by creating a new instance of class Learner in file code/learners.py

Results

Please refer to the paper.

Contributing

All of the code is under MIT license. Everyone is most welcome to submit pull requests.

Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023