Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Related tags

Deep Learningpiccolo
Overview

PICCOLO: Point-Cloud Centric Omnidirectional Localization

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021) [Paper] [Video].


PICCOLO is a simple, efficient algorithm for omnidirectional localization that estimates camera pose given a set of input query omnidirectional image and point cloud: no additional preprocessing/learning is required!


In this repository, we provide the implementation and instructions for running PICCOLO, along with the accompanying OmniScenes dataset. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Running PICCOLO

Dataset Preparation

First, download the Stanford2D-3D-S Dataset, and place the data in the directory structure below.

piccolo/data
└── stanford (Stanford2D-3D-S Dataset)
    ├── pano (panorama images)
    │   ├── area_1
    │   │  └── *.png
    │   ⋮
    │   │
    │   └── area_6
    │       └── *.png
    ├── pcd_not_aligned (point cloud data)
    │   ├── area_1
    │   │   └── *.txt
    │   ⋮
    │   │
    │   └── area_6
    │       └── *.txt
    └── pose (json files containing ground truth camera pose)
        ├── area_1
        │   └── *.json
        ⋮
        │
        └── area_6
            └── *.json

Installation

To run the codebase, you need Anaconda. Once you have Anaconda installed, run the following command to create a conda environment.

conda create --name omniloc python=3.7
conda activate omniloc
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html 
conda install cudatoolkit=10.1

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.0 and CUDA 10.1.

Running

To obtain results for the Stanford-2D-3D-S dataset, run the following command from the terminal:

python main.py --config configs/stanford.ini --log logs/NAME_OF_LOG_DIRECTORY

The config above performs gradient descent sequentially for each candidate starting point. We also provide a parallel implementation of PICCOLO, which performs gradient descent in parallel. While this version faster, it shows slightly inferior performance compared to the sequential optimization version. To run the parallel implementation, run the following command:

python main.py --config configs/stanford_parallel.ini --log logs/NAME_OF_LOG_DIRECTORY

Output

After running, four files will be in the log directory.

  • Config file used for PICCOLO
  • Images, made by projecting point cloud using the result obtained from PICCOLO, in NAME_OF_LOG_DIRECTORY/results
  • Csv file which contains the information
    • Panorama image name
    • Ground truth translation
    • Ground truth rotation
    • Whether the image was skipped (skipped when the ground truth translation is out of point cloud bound)
    • Translation obtained by running PICCOLO
    • Rotation obtained by running PICCOLO
    • Translation error
    • Rotation error
    • Time
  • Tensorboard file containing the accuracy

Downloading OmniScenes

OmniScenes is our newly collected dataset for evaluating omnidirectional localization in diverse scenearios such as robot-mounted/handheld cameras and scenes with changes.


The dataset is comprised of images and point clouds captured from 7 scenes ranging from wedding halls to hotel rooms. We are currently in the process of removing regions in the dataset that contains private information difficult to be released in public. We will notify further updates through this GitHub repository.

Owner
Noob grad student
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022