Implementation for Homogeneous Unbalanced Regularized Optimal Transport

Overview

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport.

This repository provides code related to this preprint.

This is an alpha version and is likely to be modified in the future. Any suggestion or feedback is welcome!

We refer to the tutorial for a presentation of the mathematical concepts behind this implementation.

Dependencies

  • numpy
  • PythonOptimalTransport (will probably be removed or changed to scipy in the future).

Quick start

import numpy as np
from utils import sk_div, hurot

np.random.seed(42)
# Define the measures as weights + locations.
n, m = 5, 7
a = np.random.rand(n)
b = np.random.rand(m)
x = np.random.randn(n, 2)
y = np.random.randn(m, 2) + np.array([.5, .5])

# Set the parameter for the OT cost and the Sinkhorn divergence:
mode_divergence = "TV"  # To use the total variation as the marginal divergence.
mode_homogeneity = "harmonic"  # To use the harmonic 
eps = 1  # the entropic regularization parameter

# The following returns the Sinkhorn divergence (positive).
value = sk_div(x, y, a, b,
               mode_divergence=mode_divergence,
               mode_homogeneity=mode_homogeneity,
               corrected_marginals=False,
               eps=eps,
               verbose=0, init="unif",
               nb_step=1000, crit=0., stab=True)

# The following returns :
# - P: The optimal transport plan between alpha and beta
# - f,g: the couple of optimal dual potentials
# - ot_value: the value of OT (less relevant than the Sinkhorn divergence though).
P, f, g, ot_value = hurot(x, y, a, b,
                          mode_divergence=mode_divergence,
                          mode_homogeneity=mode_homogeneity,
                          corrected_marginals=False,
                          eps=eps,
                          verbose=0, init="unif",
                          nb_step=1000, crit=0., stab=True)
Owner
Théo Lacombe
Associate prof. at LIGM, Université Gustave Eiffel.
Théo Lacombe
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022