The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

Overview

3D Human Pose Estimation with Spatial and Temporal Transformers

This repo is the official implementation for 3D Human Pose Estimation with Spatial and Temporal Transformers.

Video Demonstration

PoseFormer Architecture

Video Demo

3D HPE on Human3.6M

3D HPE on videos in-the-wild using PoseFormer

Our code is built on top of VideoPose3D.

Environment

The code is developed and tested under the following environment

  • Python 3.8.2
  • PyTorch 1.7.1
  • CUDA 11.0

You can create the environment:

conda env create -f poseformer.yml

Dataset

Our code is compatible with the dataset setup introduced by Martinez et al. and Pavllo et al.. Please refer to VideoPose3D to set up the Human3.6M dataset (./data directory).

Evaluating pre-trained models

We provide the pre-trained 81-frame model (CPN detected 2D pose as input) here. To evaluate it, put it into the ./checkpoint directory and run:

python run_poseformer.py -k cpn_ft_h36m_dbb -f 81 -c checkpoint --evaluate detected81f.bin

We also provide pre-trained 81-frame model (Ground truth 2D pose as input) here. To evaluate it, put it into the ./checkpoint directory and run:

python run_poseformer.py -k gt -f 81 -c checkpoint --evaluate gt81f.bin

Training new models

  • To train a model from scratch (CPN detected 2D pose as input), run:
python run_poseformer.py -k cpn_ft_h36m_dbb -f 27 -lr 0.00004 -lrd 0.99

-f controls how many frames are used as input. 27 frames achieves 47.0 mm, 81 frames achieves achieves 44.3 mm.

  • To train a model from scratch (Ground truth 2D pose as input), run:
python run_poseformer.py -k gt -f 81 -lr 0.0004 -lrd 0.99

81 frames achieves 31.3 mm (MPJPE).

Visualization and other functions

We keep our code consistent with VideoPose3D. Please refer to their project page for further information.

Bibtex

If you find our work useful in your research, please consider citing:

@article{zheng20213d,
title={3D Human Pose Estimation with Spatial and Temporal Transformers},
author={Zheng, Ce and Zhu, Sijie and Mendieta, Matias and Yang, Taojiannan and Chen, Chen and Ding, Zhengming},
journal={arXiv preprint arXiv:2103.10455},
year={2021}
}

Acknowledgement

Part of our code is borrowed from VideoPose3D. We thank the authors for releasing the codes.

Owner
Ce Zheng
Ce Zheng
Ce Zheng
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023