An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Overview

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text

This repo aims at providing an easy to use and efficient code for extracting image & text features using the official OpenAI CLIP models, which is also optimized for multi processing GPU feature extraction.

The official OpenAI CLIP repo only supports extracting global visual features, while the local grid features from CLIP visual models may also contain more detailed semantic information which can benefit multi visual-and-language downstream tasks[1][2]. As an alternative, this repo encapsulates minor-modified CLIP code in order to extract not only global visual features but also local grid visual features from different CLIP visual models. What's more, this repo is designed in a user-friendly object-oriented fashion, allowing users to add their customized visual_extractor classes easily to customize different input and output grid resolution.

To verify the semantic meaning of the extracted visual grid features, we also applied the extracted visual grid features of MSCOCO images from different official CLIP models for standard image captioning task. We got comparable or superior results in transformer baseline easily without hard-tuning hyperparameters, via simply replacing BUTD features with the extracted CLIP gird features. Surprisingly, we got 116.9 CIDEr score in teacher-forcing setting and 129.6 in reinforcement learning setting when using ViT-B/32 CLIP model, which conflicts with the experiment results in CLIP-ViL paper[1] where the authors observed that CLIP-ViT-B with grid features has a large performance degradation compared with other models (58.0 CIDEr score in CLIP-ViT-B_Transformer setting in COCO Captioning).

We provide supported CLIP models, results on MSCOCO image captioning, and other information below. We believe this repo can facilitate the usage of powerful CLIP models.

1. Supported CLIP Models

Currently this repo supports five visual extractor settings, including three standard pipelines used in official OpenAI CLIP repo and two additional customized pipelines supporting larger input resolution. You can refer to this file for more details about customizing your own visual backbones for different input and output resolution. In order to imporve training efficiency in image captioning task, we apply AvgPool2d to the output feature map to reduce grid features size in some settings without large performance degradation. We will support more CLIP models in the future.

Visual Backbone CLIP Model Input Resolution Output Resolution Feature Map Downsample Grid Feature Shape Global Feature Shape
Standard RN101 RN101 224 x 224 7 x 7 None 49 x 2048 1 x 512
ViT-B/32 ViT-B/32 224 x 224 7 x 7 None 49 x 768 1 x 512
ViT-B/16 ViT-B/16 224 x 224 14 x 14 AvgPool2d(kernel_size=(2,2), stride=2) 49 x 768 1 x 512
Customized RN101_448 RN101 448 x 448 14 x 14 AvgPool2d(kernel_size=(2,2), stride=2) 49 x 2048 1 x 512
ViT-B/32_448 ViT-B/32 448 x 448 14 x 14 AvgPool2d(kernel_size=(2,2), stride=2) 49 x 768 1 x 512

2. Results on MSCOCO Image Captioning (Karpathy's Splits)

We ran image captioning experiments on X-modaler with the extracted CLIP grid features. We easily got comparable or superior results in transformer baseline using the default hyperparameters in X-modaler's transformer baseline, except for SOLVER.BASE_LR=2e-4 in ViT-B/16 and ViT-B/32_448 teacher-forcing settings. The performance of transformer baseline using BUTD features is taken from X-modaler's paper.

2.1 Teacher-forcing

Name [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
BUTD 76.4 60.3 46.5 35.8 28.2 56.7 116.6 21.3
RN101 77.3 61.3 47.7 36.9 28.7 57.5 120.6 21.8
ViT-B/32 76.4 60.3 46.5 35.6 28.1 56.7 116.9 21.2
ViT-B/16 78.0 62.1 48.2 37.2 28.8 57.6 122.3 22.1
RN101_448 78.1 62.3 48.4 37.5 29.0 58.0 122.9 22.2
ViT-B/32_448 75.8 59.6 45.9 35.1 27.8 56.3 114.2 21.0

2.2 Self-critical Reinforcement Learning

Name [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
BUTD 80.5 65.4 51.1 39.2 29.1 58.7 130.0 23.0
RN101 - - - - - - - -
ViT-B/32 79.9 64.6 50.4 38.5 29.0 58.6 129.6 22.8
ViT-B/16 82.0 67.3 53.1 41.1 29.9 59.8 136.6 23.8
RN101_448 81.7 66.9 52.6 40.5 29.9 59.7 136.1 23.9
ViT-B/32_448 - - - - - - - -

3. Get Started

Note: The extracted feature files are compatible with X-modaler, where you can setup your experiments about cross-modal analytics conveniently.

3.1 Requirements

  • PyTorch ≥ 1.9 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • timm ≥ 0.4.5

3.2 Examples

  1. Use CLIP ViT-B/32 model to extract global textual features of MSCOCO sentences from dataset_coco.json in Karpathy's released annotations.
CUDA_VISIBLE_DEVICES=0 python3 clip_textual_feats.py \
    --anno dataset_coco.json \
    --output_dir ${TXT_OUTPUT_DIR} \
    --model_type_or_path 'ViT-B/32'
  1. Use CLIP ViT-B/16 model to extract global and grid visual features of MSCOCO images.
CUDA_VISIBLE_DEVICES=0 python3 clip_visual_feats.py \
    --image_list 'example/MSCOCO/image_list_2017.txt' \
    --image_dir ${IMG_DIR} \
    --output_dir ${IMG_OUTPUT_DIR} \
    --ve_name 'ViT-B/16' \
    --model_type_or_path 'ViT-B/16'
  1. Use CLIP RN101 model to extract global and grid visual features of MSCOCO images.
CUDA_VISIBLE_DEVICES=0 python3 clip_visual_feats.py \
    --image_list 'example/MSCOCO/image_list_2017.txt' \
    --image_dir ${IMG_DIR} \
    --output_dir ${IMG_OUTPUT_DIR} \
    --ve_name 'RN101' \
    --model_type_or_path 'RN101'
  1. Use CLIP RN101 model to extract global and grid visual features of MSCOCO images with 448 x 448 resolution.
CUDA_VISIBLE_DEVICES=0 python3 clip_visual_feats.py \
    --image_list 'example/MSCOCO/image_list_2017.txt' \
    --image_dir ${IMG_DIR} \
    --output_dir ${IMG_OUTPUT_DIR} \
    --ve_name 'RN101_448' \
    --model_type_or_path 'RN101'

3.3 Speeding up feature extraction with Multiple GPUs

You can run the same script with same input list (i.e. --image_list or --anno) on another GPU (that can be from a different machine, provided that the disk to output the features is shared between the machines). The script will create a new feature extraction process that will only focus on processing the items that have not been processed yet, without overlapping with the other extraction process already running.

4. License

MIT

5. Acknowledgement

This repo used resources from OpenAI CLIP, timm, CLIP-ViL, X-modaler. The repo is implemented using PyTorch. We thank the authors for open-sourcing their awesome projects.

6. References

[1] How Much Can CLIP Benefit Vision-and-Language Tasks? Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, Kurt Keutzer. In Arxiv2021.

[2] In Defense of Grid Features for Visual Question Answering. Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen. In CVPR2020.

Owner
Jianjie(JJ) Luo
SYSU & JDAIR Joint-PhD candidate.
Jianjie(JJ) Luo
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022