An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Overview

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text

This repo aims at providing an easy to use and efficient code for extracting image & text features using the official OpenAI CLIP models, which is also optimized for multi processing GPU feature extraction.

The official OpenAI CLIP repo only supports extracting global visual features, while the local grid features from CLIP visual models may also contain more detailed semantic information which can benefit multi visual-and-language downstream tasks[1][2]. As an alternative, this repo encapsulates minor-modified CLIP code in order to extract not only global visual features but also local grid visual features from different CLIP visual models. What's more, this repo is designed in a user-friendly object-oriented fashion, allowing users to add their customized visual_extractor classes easily to customize different input and output grid resolution.

To verify the semantic meaning of the extracted visual grid features, we also applied the extracted visual grid features of MSCOCO images from different official CLIP models for standard image captioning task. We got comparable or superior results in transformer baseline easily without hard-tuning hyperparameters, via simply replacing BUTD features with the extracted CLIP gird features. Surprisingly, we got 116.9 CIDEr score in teacher-forcing setting and 129.6 in reinforcement learning setting when using ViT-B/32 CLIP model, which conflicts with the experiment results in CLIP-ViL paper[1] where the authors observed that CLIP-ViT-B with grid features has a large performance degradation compared with other models (58.0 CIDEr score in CLIP-ViT-B_Transformer setting in COCO Captioning).

We provide supported CLIP models, results on MSCOCO image captioning, and other information below. We believe this repo can facilitate the usage of powerful CLIP models.

1. Supported CLIP Models

Currently this repo supports five visual extractor settings, including three standard pipelines used in official OpenAI CLIP repo and two additional customized pipelines supporting larger input resolution. You can refer to this file for more details about customizing your own visual backbones for different input and output resolution. In order to imporve training efficiency in image captioning task, we apply AvgPool2d to the output feature map to reduce grid features size in some settings without large performance degradation. We will support more CLIP models in the future.

Visual Backbone CLIP Model Input Resolution Output Resolution Feature Map Downsample Grid Feature Shape Global Feature Shape
Standard RN101 RN101 224 x 224 7 x 7 None 49 x 2048 1 x 512
ViT-B/32 ViT-B/32 224 x 224 7 x 7 None 49 x 768 1 x 512
ViT-B/16 ViT-B/16 224 x 224 14 x 14 AvgPool2d(kernel_size=(2,2), stride=2) 49 x 768 1 x 512
Customized RN101_448 RN101 448 x 448 14 x 14 AvgPool2d(kernel_size=(2,2), stride=2) 49 x 2048 1 x 512
ViT-B/32_448 ViT-B/32 448 x 448 14 x 14 AvgPool2d(kernel_size=(2,2), stride=2) 49 x 768 1 x 512

2. Results on MSCOCO Image Captioning (Karpathy's Splits)

We ran image captioning experiments on X-modaler with the extracted CLIP grid features. We easily got comparable or superior results in transformer baseline using the default hyperparameters in X-modaler's transformer baseline, except for SOLVER.BASE_LR=2e-4 in ViT-B/16 and ViT-B/32_448 teacher-forcing settings. The performance of transformer baseline using BUTD features is taken from X-modaler's paper.

2.1 Teacher-forcing

Name [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
BUTD 76.4 60.3 46.5 35.8 28.2 56.7 116.6 21.3
RN101 77.3 61.3 47.7 36.9 28.7 57.5 120.6 21.8
ViT-B/32 76.4 60.3 46.5 35.6 28.1 56.7 116.9 21.2
ViT-B/16 78.0 62.1 48.2 37.2 28.8 57.6 122.3 22.1
RN101_448 78.1 62.3 48.4 37.5 29.0 58.0 122.9 22.2
ViT-B/32_448 75.8 59.6 45.9 35.1 27.8 56.3 114.2 21.0

2.2 Self-critical Reinforcement Learning

Name [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
BUTD 80.5 65.4 51.1 39.2 29.1 58.7 130.0 23.0
RN101 - - - - - - - -
ViT-B/32 79.9 64.6 50.4 38.5 29.0 58.6 129.6 22.8
ViT-B/16 82.0 67.3 53.1 41.1 29.9 59.8 136.6 23.8
RN101_448 81.7 66.9 52.6 40.5 29.9 59.7 136.1 23.9
ViT-B/32_448 - - - - - - - -

3. Get Started

Note: The extracted feature files are compatible with X-modaler, where you can setup your experiments about cross-modal analytics conveniently.

3.1 Requirements

  • PyTorch ≥ 1.9 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • timm ≥ 0.4.5

3.2 Examples

  1. Use CLIP ViT-B/32 model to extract global textual features of MSCOCO sentences from dataset_coco.json in Karpathy's released annotations.
CUDA_VISIBLE_DEVICES=0 python3 clip_textual_feats.py \
    --anno dataset_coco.json \
    --output_dir ${TXT_OUTPUT_DIR} \
    --model_type_or_path 'ViT-B/32'
  1. Use CLIP ViT-B/16 model to extract global and grid visual features of MSCOCO images.
CUDA_VISIBLE_DEVICES=0 python3 clip_visual_feats.py \
    --image_list 'example/MSCOCO/image_list_2017.txt' \
    --image_dir ${IMG_DIR} \
    --output_dir ${IMG_OUTPUT_DIR} \
    --ve_name 'ViT-B/16' \
    --model_type_or_path 'ViT-B/16'
  1. Use CLIP RN101 model to extract global and grid visual features of MSCOCO images.
CUDA_VISIBLE_DEVICES=0 python3 clip_visual_feats.py \
    --image_list 'example/MSCOCO/image_list_2017.txt' \
    --image_dir ${IMG_DIR} \
    --output_dir ${IMG_OUTPUT_DIR} \
    --ve_name 'RN101' \
    --model_type_or_path 'RN101'
  1. Use CLIP RN101 model to extract global and grid visual features of MSCOCO images with 448 x 448 resolution.
CUDA_VISIBLE_DEVICES=0 python3 clip_visual_feats.py \
    --image_list 'example/MSCOCO/image_list_2017.txt' \
    --image_dir ${IMG_DIR} \
    --output_dir ${IMG_OUTPUT_DIR} \
    --ve_name 'RN101_448' \
    --model_type_or_path 'RN101'

3.3 Speeding up feature extraction with Multiple GPUs

You can run the same script with same input list (i.e. --image_list or --anno) on another GPU (that can be from a different machine, provided that the disk to output the features is shared between the machines). The script will create a new feature extraction process that will only focus on processing the items that have not been processed yet, without overlapping with the other extraction process already running.

4. License

MIT

5. Acknowledgement

This repo used resources from OpenAI CLIP, timm, CLIP-ViL, X-modaler. The repo is implemented using PyTorch. We thank the authors for open-sourcing their awesome projects.

6. References

[1] How Much Can CLIP Benefit Vision-and-Language Tasks? Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, Kurt Keutzer. In Arxiv2021.

[2] In Defense of Grid Features for Visual Question Answering. Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen. In CVPR2020.

Owner
Jianjie(JJ) Luo
SYSU & JDAIR Joint-PhD candidate.
Jianjie(JJ) Luo
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022