A python framework to transform natural language questions to queries in a database query language.

Related tags

Text Data & NLPquepy
Overview
  __ _ _   _  ___ _ __  _   _
 / _` | | | |/ _ \ '_ \| | | |
| (_| | |_| |  __/ |_) | |_| |
 \__, |\__,_|\___| .__/ \__, |
    |_|          |_|    |___/

What's quepy?

Quepy is a python framework to transform natural language questions to queries in a database query language. It can be easily customized to different kinds of questions in natural language and database queries. So, with little coding you can build your own system for natural language access to your database.

Currently Quepy provides support for Sparql and MQL query languages. We plan to extended it to other database query languages.

An example

To illustrate what can you do with quepy, we included an example application to access DBpedia contents via their sparql endpoint.

You can try the example online here: Online demo

Or, you can try the example yourself by doing:

python examples/dbpedia/main.py "Who is Tom Cruise?"

And it will output something like this:

SELECT DISTINCT ?x1 WHERE {
    ?x0 rdf:type foaf:Person.
    ?x0 rdfs:label "Tom Cruise"@en.
    ?x0 rdfs:comment ?x1.
}

Thomas Cruise Mapother IV, widely known as Tom Cruise, is an...

The transformation from natural language to sparql is done by first using a special form of regular expressions:

person_name = Group(Plus(Pos("NNP")), "person_name")
regex = Lemma("who") + Lemma("be") + person_name + Question(Pos("."))

And then using and a convenient way to express semantic relations:

person = IsPerson() + HasKeyword(person_name)
definition = DefinitionOf(person)

The rest of the transformation is handled automatically by the framework to finally produce this sparql:

SELECT DISTINCT ?x1 WHERE {
    ?x0 rdf:type foaf:Person.
    ?x0 rdfs:label "Tom Cruise"@en.
    ?x0 rdfs:comment ?x1.
}

Using a very similar procedure you could generate and MQL query for the same question obtaining:

[{
    "/common/topic/description": [{}],
    "/type/object/name": "Tom Cruise",
    "/type/object/type": "/people/person"
}]

Installation

You need to have installed docopt and numpy. Other than that, you can just type:

pip install quepy

You can get more details on the installation here:

http://quepy.readthedocs.org/en/latest/installation.html

Learn more

You can find a tutorial here:

http://quepy.readthedocs.org/en/latest/tutorial.html

And the full documentation here:

http://quepy.readthedocs.org/

Join our mailing list

Contribute!

Want to help develop quepy? Welcome aboard! Find us in http://groups.google.com/group/quepy

Owner
Machinalis
Machinalis
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
189 Jan 02, 2023
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022