Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

Related tags

Text Data & NLPBPT
Overview

BP-Transformer

This repo contains the code for our paper

BP-Transformer: Modeling Long-Range Context via Binary Partition

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, Zheng Zhang

The code is written in DGL with PyTorch as backend.

Requirements

  • torchtext 0.4
  • dgl 0.4 (the code on master branch is not compatible with dgl 0.5, please checkout develop branch for dgl 0.5 compatible version).
  • yaml
  • spacy
  • PyTorch 1.1+

Usage

For Multi-GPU training, please export NCCL_LL_THRESHOLD=0 before running scripts because of a PyTorch bug mentioned here.

The codebase has two dependencies: graph_kernel and graph_builder, the first one is for efficient graph attention on GPU with node parallel strategy written in CUDA, the second one is for efficient graph construction written in Cython. To install them:

cd graph_builder
python setup.py install
cd ..
cd graph_kernel
python setup.py install
cd ..

We support the following tasks with BPT as backbone:

  • Text Classification: text_classification.py
  • Language Modeling: lm.py
  • Machine Translation: mt.py
  • Natural Language Inference: nli.py

All experiment settings mentioned in our paper are available at configs/.

python *.py --config configs/*.yml --gpu [GPUs]

Note that this repo does not contain any data files, to get dataset required for experiments, run . get_*.sh and the corresponding dataset would be downloaded and preprocessed.

For machine translation, we have another script mt_infer.py for decoding:

python mt_infer.py --config configs/*.yml --gpu [GPU]

Before decoding, please make sure you have finished the training using mt.py with the same config file.

NOTE: Currently we do not support CPU training/inference.

Visualization

Following is the visualization of the sparse matrix of BPT underlying graph when sequence length is 8192 and k is 4. image

Results

  • Character-Level Language Modeling (enwik8, metric: bpc), 12 layers.
    • BPT(context length=8192): 1.02
    • Adaptive Transformer: 1.02
    • Transformer-XL: 1.06
    • To reproduce: python lm.py --config configs/enwik8-8192.yml --gpu 0,1,2,3,4,5,6,7
  • Document-Level Machine Translation (IWSLT 2015 Zh-En, metric: BLEU), base setting.
    • BPT(context length=64): 19.84
    • HAN-NMT: 17.68
    • To reproduce: python mt.py --config configs/iwslt-4-64.yml --gpu 0
  • Text Classification (IMDB, metric: accuracy), 5 layers.
    • BPT+GloVe: 92.12(±0.11)
    • LSTM+CoVe: 91.8
    • Transformer+Glove: 89.24(±0.20)
    • Star Transformer: 90.50
    • To reproduce: python text_classification.py --config configs/imdb-4.yml --gpu 0
      • Note that our CUDA kernel uses atomic operations which may result in non-determinism, we report the mean and std of accuracy in multiple(10) runs.
      • The IMDB dataset has not official train/dev split, we follow the setting of Bryan et al., 2017 and hold out 10% samples for validation. We report the test accuracy of model with best valid loss.

For sentence level modeling, we show that BPT models better inductive bias than vanilla transformer by attending fine-grained features of neighbors and coarse-grained features of far-away tokens.

  • Machine Translation(WMT14 En-De, metric: BLEU), base setting.
    • BPT(k=1): 26.9
    • BPT(k=2): 27.4
    • BPT(k=4): 27.6
    • BPT(k=8): 26.7
    • Transformer-base(our implementation): 27.2
    • To reproduce: python mt.py --config configs/wmt-*.yml --gpu 0,1,2,3,4,5,6,7
      • We report SacreBLEU result for reproducibility (setting: BLEU+c.mixed+l.en-de+#.1+s.exp+t.wmt14+tok.intl+v.1.4.1), the sacrebleu score is usually lower than that produced by get_ende_bleu.sh script in tensor2tensor as described here.
  • Natural Language Inference(SNLI, metric: accuracy), ESIM-like structure, 3 layers for self-attention and 3 layers for cross-sentence attention.
    • BPT(k=4): 88.25(±0.07)
    • Transformer: 87.89(±0.31)
    • To reproduce: python nli.py --config configs/snli.yml --gpu 0
      • Like Text Classification, the result on NLI is also not stable because of randomness in our CUDA kernel, we report the mean and std of accuracy in multiple(7) runs.
  • Text Classification(SST-5, metric: accuracy), 4 layers.
    • BPT+GloVe: 52.71(±0.32)
    • Transformer+GloVe: 50.40
    • Tree-LSTM+GloVe: 51.0
    • To reproduce: python text_classification.py --config configs/sst5-2.yml --gpu 0

TODOs

  • FP16 support (mixed-precision training/inference)
  • Integrate kernels with dgl 0.5
  • CPU support
Owner
Zihao Ye
Ph.D. [email protected] of Washington, focusing on Compilers and Computer Arch
Zihao Ye
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022