An open-access benchmark and toolbox for electricity price forecasting

Overview

epftoolbox

The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a set of tools that ensure reproducibility and establish research standards in electricity price forecasting research.

The library has been developed as part of the following article:

  • Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark". Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

The library is distributed under the AGPL-3.0 License and it is built on top of scikit-learn, tensorflow, keras, hyperopt, statsmodels, numpy, and pandas.

Website: https://epftoolbox.readthedocs.io/en/latest/

Getting started

Download the repository and navigate into the folder

$ git clone https://github.com/jeslago/epftoolbox.git
$ cd epftoolbox

Install using pip

$ pip install .

Navigate to the examples folder and check the existing examples to get you started. The examples include several applications of the two state-of-the art forecasting model: a deep neural net and the LEAR model.

Documentation

The documentation can be found here. It provides an introduction to the library features and explains all functionalities in detail. Note that the documentation is still being built and some functionalities are still undocumented.

Features

The library provides easy access to a set of tools and benchmarks that can be used to evaluate and compare new methods for electricity price forecasting.

Forecasting models

The library includes two state-of-the-art forecasting models that can be automatically employed in any day-ahead market without the need of expert knowledge. At the moment, the library comprises two main models:

  • One based on a deep neural network
  • A second based on an autoregressive model with LASSO regulazariton (LEAR).

Evaluation metrics

Standard evaluation metrics for electricity price forecasting including:

  • Multiple scalar metrics like MAE, sMAPE, or MASE.
  • Two statistical tests (Diebold-Mariano and Giacomini-White) to evaluate statistical differents in forecasting performance.

Day-ahead market datasets

Easy access to five datasets comprising 6 years of data each and representing five different day-ahead electricity markets:

  • The datasets represents the EPEX-BE, EPEX-FR, EPEX-DE, NordPool, and PJM markets.
  • Each dataset contains historical prices plus two time series representing exogenous inputs.

Available forecasts

Readily available forecasts of the state-of-the-art methods so that researchers can evaluate new methods without re-estimating the models.

Citation

If you use the epftoolbox in a scientific publication, we would appreciate citations to the following paper:

  • Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafał Weron. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark". Applied Energy 2021; 293:116983. https://doi.org/10.1016/j.apenergy.2021.116983.

Bibtex entry::

@article{epftoolbox,
title = {Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark},
journal = {Applied Energy},
volume = {293},
pages = {116983},
year = {2021},
doi = {https://doi.org/10.1016/j.apenergy.2021.116983},
author = {Jesus Lago and Grzegorz Marcjasz and Bart {De Schutter} and Rafał Weron}
}
Owner
Applied Scientist At Amazon
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022