A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

Overview

A Light and Fast Face Detector for Edge Devices

Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended to use LFD instead !!! Visit LFD Repo here. This repo will not be maintained from now on.

Recent Update

  • 2019.07.25 This repos is first online. Face detection code and trained models are released.
  • 2019.08.15 This repos is formally released. Any advice and error reports are sincerely welcome.
  • 2019.08.22 face_detection: latency evaluation on TX2 is added.
  • 2019.08.25 face_detection: RetinaFace-MobileNet-0.25 is added for comparison (both accuracy and latency).
  • 2019.09.09 LFFD is ported to NCNN (link) and MNN (link) by SyGoing, great thanks to SyGoing.
  • 2019.09.10 face_detection: important bug fix: vibration offset should be subtracted by shift in data iterator. This bug may result in lower accuracy, inaccurate bbox prediction and bbox vibration in test phase. We will upgrade v1 and v2 as soon as possible (should have higher accuracy and more stable).
  • 2019.09.17 face_detection: model v2 is upgraded! After fixing the bug, we have fine-tuned the old v2 model. The accuracy on WIDER FACE is improved significantly! Please try new v2.
  • 2019.09.18 pedestrian_detection: preview version of model v1 for Caltech Pedestrian Dataset is released.
  • 2019.09.23 head_detection: model v1 for brainwash dataset is released.
  • 2019.10.02 license_plate_detection: model v1 for CCPD dataset is released. (The accuracy is very high and the latency is very short! Have a try.)
  • 2019.10.02 Currently, we have provided some application-oriented detectors. Subsequently, we will put most energy to next generation framework for single-class detection. Any feedback is welcome.
  • 2019.10.16 face_detection: the preview of PyTorch version is ready (link). Any feedback is welcome.
  • 2019.10.16 Tips: data preparation is important, irrational values of (x,y,w,h) may introduce nan in training; we trained models with convs followed by BNs. But we found that the convergence is not stable, and can not reach a good point.
  • 2019.11.08 face_detection: caffe version of LFFD is provided by vicwer (great thanks). Guys who are familiar with caffe can navigate to /face_detection/caffemodel for details.
  • 2020.03.27 license_plate_detection: model v1_small for CCPD dataset is released. v1_small has much less parameters than v1, hence it is much faster. The AP of v1_small is 0.982 (vs v1-0.989). Please check README.md. Besides, a commercial-ready license plate recognition repo which adopted LFFD as the detector is hightly recommended!

Introduction

This repo releases the source code of paper "LFFD: A Light and Fast Face Detector for Edge Devices". Our paper presents a light and fast face detector (LFFD) for edge devices. LFFD considerably balances both accuracy and latency, resulting in small model size, fast inference speed while achieving excellent accuracy. Understanding the essence of receptive field makes detection networks interpretable.

In practical, we have deployed it in cloud and edge devices (like NVIDIA Jetson series and ARM-based embedding system). The comprehensive performance of LFFD is robust enough to support our applications.

In fact, our method is a general detection framework that applicable to one class detection, such as face detection, pedestrian detection, head detection, vehicle detection and so on. In general, an object class, whose average ratio of the longer side and the shorter side is less than 5, is appropriate to apply our framework for detection.

Several practical advantages:

  1. large scale coverage, and easy to extend to larger scales by adding more layers without much latency gain.
  2. detect small objects (as small as 10 pixels) in images with extremely large resolution (8K or even larger) in only one inference.
  3. easy backbone with very common operators makes it easy to deploy anywhere.

Accuracy and Latency

We train LFFD on train set of WIDER FACE benchmark. All methods are evaluated on val/test sets under the SIO schema (please refer to the paper for details).

  • Accuracy on val set of WIDER FACE (The values in () are results from the original papers):
Method Easy Set Medium Set Hard Set
DSFD 0.949(0.966) 0.936(0.957) 0.850(0.904)
PyramidBox 0.937(0.961) 0.927(0.950) 0.867(0.889)
S3FD 0.923(0.937) 0.907(0.924) 0.822(0.852)
SSH 0.921(0.931) 0.907(0.921) 0.702(0.845)
FaceBoxes 0.840 0.766 0.395
FaceBoxes3.2× 0.798 0.802 0.715
LFFD 0.910 0.881 0.780
  • Accuracy on test set of WIDER FACE (The values in () are results from the original papers):
Method Easy Set Medium Set Hard Set
DSFD 0.947(0.960) 0.934(0.953) 0.845(0.900)
PyramidBox 0.926(0.956) 0.920(0.946) 0.862(0.887)
S3FD 0.917(0.928) 0.904(0.913) 0.821(0.840)
SSH 0.919(0.927) 0.903(0.915) 0.705(0.844)
FaceBoxes 0.839 0.763 0.396
FaceBoxes3.2× 0.791 0.794 0.715
LFFD 0.896 0.865 0.770
  • Accuracy on FDDB:
Method Disc ROC curves score
DFSD 0.984
PyramidBox 0.982
S3FD 0.981
SSH 0.977
FaceBoxes3.2× 0.905
FaceBoxes 0.960
LFFD 0.973

In the paper, three hardware platforms are used for latency evaluation: NVIDIA GTX TITAN Xp, NVIDIA TX2 and Rasberry Pi 3 Model B+ (ARM A53).

We report the latency of inference only (for NVIDIA hardwares, data transfer is included), excluding pre-processing and post-processing. The batchsize is set to 1 for all evaluations.

  • Latency on NVIDIA GTX TITAN Xp (MXNet+CUDA 9.0+CUDNN7.1):
Resolution-> 640×480 1280×720 1920×1080 3840×2160
DSFD 78.08ms(12.81 FPS) 187.78ms(5.33 FPS) 392.82ms(2.55 FPS) 1562.50ms(0.64 FPS)
PyramidBox 50.51ms(19.08 FPS) 143.34ms(6.98 FPS) 331.93ms(3.01 FPS) 1344.07ms(0.74 FPS)
S3FD 21.75ms(45.95 FPS) 55.73ms(17.94 FPS) 119.53ms(8.37 FPS) 471.31ms(2.21 FPS)
SSH 22.44ms(44.47 FPS) 55.29ms(18.09 FPS) 118.43ms(8.44 FPS) 463.10ms(2.16 FPS)
FaceBoxes3.2× 6.80ms(147.00 FPS) 12.96ms(77.19 FPS) 25.37ms(39.41 FPS) 111.98ms(8.93 FPS)
LFFD 7.60ms(131.40 FPS) 16.37ms(61.07 FPS) 31.27ms(31.98 FPS) 87.79ms(11.39 FPS)
  • Latency on NVIDIA TX2 (MXNet+CUDA 9.0+CUDNN7.1) presented in the paper:
Resolution-> 160×120 320×240 640×480
FaceBoxes3.2× 11.20ms(89.29 FPS) 19.62ms(50.97 FPS) 72.74ms(13.75 FPS)
LFFD 7.30ms(136.99 FPS) 19.64ms(50.92 FPS) 64.70ms(15.46 FPS)
  • Latency on Respberry Pi 3 Model B+ (ncnn) presented in the paper:
Resolution-> 160×120 320×240 640×480
FaceBoxes3.2× 167.20ms(5.98 FPS) 686.19ms(1.46 FPS) 3232.26ms(0.31 FPS)
LFFD 118.45ms(8.44 FPS) 409.19ms(2.44 FPS) 4114.15ms(0.24 FPS)

On NVIDIA platform, TensorRT is the best choice for inference. So we conduct additional latency evaluations using TensorRT (the latency is dramatically decreased!!!). As for ARM based platform, we plan to use MNN and Tengine for latency evaluation. Details can be found in the sub-project face_detection.

Getting Started

We implement the proposed method using MXNet Module API.

Prerequirements (global)

  • Python>=3.5
  • numpy>=1.16 (lower versions should work as well, but not tested)
  • MXNet>=1.4.1 (install guide)
  • cv2=3.x (pip3 install opencv-python==3.4.5.20, other version should work as well, but not tested)

Tips:

  • use MXNet with cudnn.
  • build numpy from source with OpenBLAS. This will improve the training efficiency.
  • make sure cv2 links to libjpeg-turbo, not libjpeg. This will improve the jpeg decode efficiency.

Sub-directory description

  • face_detection contains the code of training, evaluation and inference for LFFD, the main content of this repo. The trained models of different versions are provided for off-the-shelf deployment.
  • head_detection contains the trained models for head detection. The models are obtained by the proposed general one class detection framework.
  • pedestrian_detection contains the trained models for pedestrian detection. The models are obtained by the proposed general one class detection framework.
  • vehicle_detection contains the trained models for vehicle detection. The models are obtained by the proposed general one class detection framework.
  • ChasingTrainFramework_GeneralOneClassDetection is a simple wrapper based on MXNet Module API for general one class detection.

Installation

  1. Download the repo:
git clone https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices.git
  1. Refer to the corresponding sub-project for detailed usage.

Citation

If you benefit from our work in your research and product, please kindly cite the paper

@inproceedings{LFFD,
title={LFFD: A Light and Fast Face Detector for Edge Devices},
author={He, Yonghao and Xu, Dezhong and Wu, Lifang and Jian, Meng and Xiang, Shiming and Pan, Chunhong},
booktitle={arXiv:1904.10633},
year={2019}
}

To Do List

Contact

Yonghao He

E-mails: [email protected] / [email protected]

If you are interested in this work, any innovative contributions are welcome!!!

Internship is open at NLPR, CASIA all the time. Send me your resumes!

Owner
YonghaoHe
Assistant Professor
YonghaoHe
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021