An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

Overview

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame is a reinforcement learning environment for simulating attack and defense operations in an abstract network intrusion game. The environment extends the abstract model described in (Elderman et al. 2017). The model constitutes a two-player Markov game between an attacker agent and a defender agent that face each other in a simulated computer network. The reinforcement learning environment exposes an interface to a partially observed Markov decision process (POMDP) model of the Markov game. The interface can be used to train, simulate, and evaluate attack- and defend policies against each other. Moreover, the repository contains code to reproduce baseline results for various reinforcement learning algorithms, including:

  • Tabular Q-learning
  • Neural-fitted Q-learning using the DQN algorithm.
  • REINFORCE with baseline
  • Actor-Critic REINFORCE
  • PPO

Please use this bibtex if you make use of this code in your publications (paper: https://arxiv.org/abs/2009.08120):

@INPROCEEDINGS{Hamm2011:Finding,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Finding Effective Security Strategies through Reinforcement Learning and
{Self-Play}",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2020)
(CNSM 2020)",
ADDRESS="Izmir, Turkey",
DAYS=1,
MONTH=nov,
YEAR=2020,
KEYWORDS="Network Security; Reinforcement Learning; Markov Security Games",
ABSTRACT="We present a method to automatically find security strategies for the use
case of intrusion prevention. Following this method, we model the
interaction between an attacker and a defender as a Markov game and let
attack and defense strategies evolve through reinforcement learning and
self-play without human intervention. Using a simple infrastructure
configuration, we demonstrate that effective security strategies can emerge
from self-play. This shows that self-play, which has been applied in other
domains with great success, can be effective in the context of network
security. Inspection of the converged policies show that the emerged
policies reflect common-sense knowledge and are similar to strategies of
humans. Moreover, we address known challenges of reinforcement learning in
this domain and present an approach that uses function approximation, an
opponent pool, and an autoregressive policy representation. Through
evaluations we show that our method is superior to two baseline methods but
that policy convergence in self-play remains a challenge."
}

Publications

Table of Contents

Design

Included Environments

A rich set of configurations of the Markov game are registered as openAI gym environments. The environments are specified and implemented in gym_idsgame/envs/idsgame_env.py see also gym_idsgame/__init__.py.

minimal_defense

This is an environment where the agent is supposed to play the attacker in the Markov game and the defender is following the defend_minimal baseline defense policy. The defend_minimal policy entails that the defender will always defend the attribute with the minimal value out of all of its neighbors.

Registered configurations:

  • idsgame-minimal_defense-v0
  • idsgame-minimal_defense-v1
  • idsgame-minimal_defense-v2
  • idsgame-minimal_defense-v3
  • idsgame-minimal_defense-v4
  • idsgame-minimal_defense-v5
  • idsgame-minimal_defense-v6
  • idsgame-minimal_defense-v7
  • idsgame-minimal_defense-v8
  • idsgame-minimal_defense-v9
  • idsgame-minimal_defense-v10
  • idsgame-minimal_defense-v11
  • idsgame-minimal_defense-v12
  • idsgame-minimal_defense-v13
  • idsgame-minimal_defense-v14
  • idsgame-minimal_defense-v15
  • idsgame-minimal_defense-v16
  • idsgame-minimal_defense-v17
  • idsgame-minimal_defense-v18
  • idsgame-minimal_defense-v19
  • idsgame-minimal_defense-v20

maximal_attack

This is an environment where the agent is supposed to play the defender and the attacker is following the attack_maximal baseline attack policy. The attack_maximal policy entails that the attacker will always attack the attribute with the maximum value out of all of its neighbors.

Registered configurations:

  • idsgame-maximal_attack-v0
  • idsgame-maximal_attack-v1
  • idsgame-maximal_attack-v2
  • idsgame-maximal_attack-v3
  • idsgame-maximal_attack-v4
  • idsgame-maximal_attack-v5
  • idsgame-maximal_attack-v6
  • idsgame-maximal_attack-v7
  • idsgame-maximal_attack-v8
  • idsgame-maximal_attack-v9
  • idsgame-maximal_attack-v10
  • idsgame-maximal_attack-v11
  • idsgame-maximal_attack-v12
  • idsgame-maximal_attack-v13
  • idsgame-maximal_attack-v14
  • idsgame-maximal_attack-v15
  • idsgame-maximal_attack-v16
  • idsgame-maximal_attack-v17
  • idsgame-maximal_attack-v18
  • idsgame-maximal_attack-v19
  • idsgame-maximal_attack-v20

random_attack

This is an environment where the agent is supposed to play as the defender and the attacker is following a random baseline attack policy.

Registered configurations:

  • idsgame-random_attack-v0
  • idsgame-random_attack-v1
  • idsgame-random_attack-v2
  • idsgame-random_attack-v3
  • idsgame-random_attack-v4
  • idsgame-random_attack-v5
  • idsgame-random_attack-v6
  • idsgame-random_attack-v7
  • idsgame-random_attack-v8
  • idsgame-random_attack-v9
  • idsgame-random_attack-v10
  • idsgame-random_attack-v11
  • idsgame-random_attack-v12
  • idsgame-random_attack-v13
  • idsgame-random_attack-v14
  • idsgame-random_attack-v15
  • idsgame-random_attack-v16
  • idsgame-random_attack-v17
  • idsgame-random_attack-v18
  • idsgame-random_attack-v19
  • idsgame-random_attack-v20

random_defense

An environment where the agent is supposed to play as the attacker and the defender is following a random baseline defense policy.

Registered configurations:

  • idsgame-random_defense-v0
  • idsgame-random_defense-v1
  • idsgame-random_defense-v2
  • idsgame-random_defense-v3
  • idsgame-random_defense-v4
  • idsgame-random_defense-v5
  • idsgame-random_defense-v6
  • idsgame-random_defense-v7
  • idsgame-random_defense-v8
  • idsgame-random_defense-v9
  • idsgame-random_defense-v10
  • idsgame-random_defense-v11
  • idsgame-random_defense-v12
  • idsgame-random_defense-v13
  • idsgame-random_defense-v14
  • idsgame-random_defense-v15
  • idsgame-random_defense-v16
  • idsgame-random_defense-v17
  • idsgame-random_defense-v18
  • idsgame-random_defense-v19
  • idsgame-random_defense-v20

two_agents

This is an environment where neither the attacker nor defender is part of the environment, i.e. it is intended for 2-agent simulations or RL training. In the experiments folder you can see examples of using this environment for training PPO-attacker vs PPO-defender, DQN-attacker vs REINFORCE-defender, etc..

Registered configurations:

  • idsgame-v0
  • idsgame-v1
  • idsgame-v2
  • idsgame-v3
  • idsgame-v4
  • idsgame-v5
  • idsgame-v6
  • idsgame-v7
  • idsgame-v8
  • idsgame-v9
  • idsgame-v10
  • idsgame-v11
  • idsgame-v12
  • idsgame-v13
  • idsgame-v14
  • idsgame-v15
  • idsgame-v16
  • idsgame-v17
  • idsgame-v18
  • idsgame-v19
  • idsgame-v20

Requirements

  • Python 3.5+
  • OpenAI Gym
  • NumPy
  • Pyglet (OpenGL 3D graphics)
  • GPU for 3D graphics acceleration (optional)
  • jsonpickle (for configuration files)
  • torch (for baseline algorithms)

Installation & Tests

# install from pip
pip install gym-idsgame==1.0.12
# local install from source
$ pip install -e gym-idsgame
# force upgrade deps
$ pip install -e gym-idsgame --upgrade

# git clone and install from source
git clone https://github.com/Limmen/gym-idsgame
cd gym-idsgame
pip3 install -e .

# run unit tests
pytest

# run it tests
cd experiments
make tests

Usage

The environment can be accessed like any other OpenAI environment with gym.make. Once the environment has been created, the API functions step(), reset(), render(), and close() can be used to train any RL algorithm of your preference.

import gym
from gym_idsgame.envs import IdsGameEnv
env_name = "idsgame-maximal_attack-v3"
env = gym.make(env_name)

The environment ships with implementation of several baseline algorithms, e.g. the tabular Q(0) algorithm, see the example code below.

import gym
from gym_idsgame.agents.training_agents.q_learning.q_agent_config import QAgentConfig
from gym_idsgame.agents.training_agents.q_learning.tabular_q_learning.tabular_q_agent import TabularQAgent
random_seed = 0
util.create_artefact_dirs(default_output_dir(), random_seed)
q_agent_config = QAgentConfig(gamma=0.999, alpha=0.0005, epsilon=1, render=False, eval_sleep=0.9,
                              min_epsilon=0.01, eval_episodes=100, train_log_frequency=100,
                              epsilon_decay=0.9999, video=True, eval_log_frequency=1,
                              video_fps=5, video_dir=default_output_dir() + "/results/videos/" + str(random_seed), num_episodes=20001,
                              eval_render=False, gifs=True, gif_dir=default_output_dir() + "/results/gifs/" + str(random_seed),
                              eval_frequency=1000, attacker=True, defender=False, video_frequency=101,
                              save_dir=default_output_dir() + "/results/data/" + str(random_seed))
env_name = "idsgame-minimal_defense-v2"
env = gym.make(env_name, save_dir=default_output_dir() + "/results/data/" + str(random_seed))
attacker_agent = TabularQAgent(env, q_agent_config)
attacker_agent.train()
train_result = attacker_agent.train_result
eval_result = attacker_agent.eval_result

Manual Play

You can run the environment in a mode of "manual control" as well:

from gym_idsgame.agents.manual_agents.manual_defense_agent import ManualDefenseAgent
random_seed = 0
env_name = "idsgame-random_attack-v2"
env = gym.make(env_name)
ManualDefenseAgent(env.idsgame_config)

Baseline Experiments

The experiments folder contains results, hyperparameters and code to reproduce reported results using this environment. For more information about each individual experiment, see this README.

Clean All Experiment Results

cd experiments # cd into experiments folder
make clean

Run All Experiment Results (Takes a long time)

cd experiments # cd into experiments folder
make all

Run All Experiments For a specific environment (Takes a long time)

cd experiments # cd into experiments folder
make v0

Run a specific experiment

cd experiments/training/v0/random_defense/tabular_q_learning/ # cd into the experiment folder
make run

Clean a specific experiment

cd experiments/training/v0/random_defense/tabular_q_learning/ # cd into the experiment folder
make clean

Start tensorboard for a specifc experiment

cd experiments/training/v0/random_defense/tabular_q_learning/ # cd into the experiment folder
make tensorboard

Fetch Baseline Experiment Results

By default when cloning the repo the experiment results are not included, to fetch the experiment results, install and setup git-lfs then run:

git lfs fetch --all
git lfs pull

Author & Maintainer

Kim Hammar [email protected]

Copyright and license

LICENSE

MIT

(C) 2020, Kim Hammar

Owner
Kim Hammar
PhD @KTH, ML, Distributed systems, security & stuff. Previously @logicalclocks, Allstate, Ericsson.
Kim Hammar
2 Jul 19, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022