Machine learning template for projects based on sklearn library.

Overview

Scikit-learn-project-template

About the project

  • Folder structure suitable for many machine learning projects. Especially for those with small amount of available training data.
  • .json config file support for convenient parameter tuning.
  • Customizable command line options for more convenient parameter tuning.
  • Abstract base classes for faster development:
    • BaseOptimizer handles execution of grid search, saving and loading of models and formation of test and train reports.
    • BaseDataLoader handles splitting of training and testing data. Spilt is performed depending on settings provided in config file.
    • BaseModel handles construction of consecutive steps defined in config file.

Getting Started

To get a local copy up and running follow steps below.

Requirements

  • Python >= 3.7
  • Packages included in requirements.txt file
  • (Anaconda for easy installation)

Install dependencies

Create and activate virtual environment:

conda create -n yourenvname python=3.7
conda activate yourenvname

Install packages:

python -m pip install -r requirements.txt

Folder Structure

sklearn-project-template/
│
├── main.py - main script to start training and (optionally) testing
│
├── base/ - abstract base classes
│   ├── base_data_loader.py
│   ├── base_model.py
│   └── base_optimizer.py
│
├── configs/ - holds configuration for training and testing
│   ├── config_classification.json
│   ├── config_regression.json
│
├── data/ - default directory for storing input data
│
├── data_loaders/ - anything about data loading goes here
│   └── data_loaders.py
│
├── models/ - models
│   ├── __init__.py - defined models by name
│   └── models.py
│
├── optimizers/ - optimizers
│   └── optimizers.py
│
├── saved/ - config, model and reports are saved here
│   ├── Classification
│   └── Regression
│
├── utils/ - utility functions
│   └── parse_config.py - class to handle config file and cli options
│   ├── utils.py
│
├── wrappers/ - wrappers of modified sklearn models or self defined transforms
│   ├── data_transformations.py
│   └── wrappers.py

Usage

Models in this repo are trained on two well-known datasets: iris and boston. First is used for classification and second for regression problem.

Run classification:

python main.py -c configs/config_classification.json

Run regression:

python main.py -c configs/config_regression.json

Config file format

Config files are in .json format. Example of such config is shown below:

{
    "name": "Classification",   // session name

    "model": {
        "type": "Model",    // model name
        "args": {
            "pipeline": ["scaler", "PLS", "pf", "SVC"]     // pipeline of methods
        }
    },

    "tuned_parameters":[{   // parameters to be tuned with search method
                        "SVC__kernel": ["rbf"],
                        "SVC__gamma": [1e-5, 1e-6, 1],
                        "SVC__C": [1, 100, 1000],
                        "PLS__n_components": [1,2,3]
                    }],

    "optimizer": "OptimizerClassification",    // name of optimizer

    "search_method":{
        "type": "GridSearchCV",    // method used to search through parameters
        "args": {
            "refit": false,
            "n_jobs": -1,
            "verbose": 2,
            "error_score": 0
        }
    },

    "cross_validation": {
        "type": "RepeatedStratifiedKFold",     // type of cross-validation used
        "args": {
            "n_splits": 5,
            "n_repeats": 10,
            "random_state": 1
        }
    },

    "data_loader": {
        "type": "Classification",      // name of dataloader class
        "args":{
            "data_path": "data/path-to-file",    // path to data
            "shuffle": true,    // if data shuffled before optimization
            "test_split": 0.2,  // use split method for model testing
            "stratify": true,   // if data stratified before optimization
            "random_state":1    // random state for repeaded output
        }
    },

    "score": "max balanced_accuracy",     // mode and metrics used for scoring
    "test_model": true,     // if model is tested after training
    "save_dir": "saved/"    // directory of saved reports, models and configs

}

Additional parameters can be added to config file. See SK-learn documentation for description of tuned parameters, search method and cross validation. Possible metrics for model evaluation could be found here.

Pipeline

Methods added to config pipeline must be first defined in models/__init__.py file. For previous example of config file the following must be added:

from wrappers import *
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import PolynomialFeatures

methods_dict = {
  'pf': PolynomialFeatures,
  'scaler': StandardScaler,
  'PLS':PLSRegressionWrapper,
  'SVC':SVC,
}

Majority of algorithms implemented in SK-learn library can be directly imported and used. Some algorithms need a little modification before usage. Such an example is Partial least squares (PLS). Modification is implemented in wrappers/wrappers.py. In case you want to implement your own method it can be done as well. An example wrapper for Savitzky golay filter is shown in wrappers/data_transformations.py. Implementation must satisfy standard method calls, eg. fit(), tranform() etc.

Customization

Custom CLI options

Changing values of config file is a clean, safe and easy way of tuning hyperparameters. However, sometimes it is better to have command line options if some values need to be changed too often or quickly.

This template uses the configurations stored in the json file by default, but by registering custom options as follows you can change some of them using CLI flags.

# simple class-like object having 3 attributes, `flags`, `type`, `target`.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
      CustomArgs(['-cv', '--cross_validation'], type=int, target='cross_validation;args;n_repeats'),
    # options added here can be modified by command line flags.
]

target argument should be sequence of keys, which are used to access that option in the config dict. In this example, target number of repeats in cross validation option is ('cross_validation', 'args', 'n_repeats') because config['cross_validation']['args']['n_repeats'] points to number of repeats.

Data Loader

  • Writing your own data loader
  1. Inherit BaseDataLoader

    BaseDataLoader handles:

    • Train/test procedure
    • Data shuffling
  • Usage

    Loaded data must be assigned to data_handler (dh) in appropriate manner. If dh.X_data_test and dh.y_data_test are not assigned in advance, train/test split could be created by base data loader. In case "test_split":0.0 is set in config file, whole dataset is used for training. Another option is to assign both train and test sets as shown below. In this case train data will be used for optimization and test data will be used for evaluation of a model.

    data_handler.X_data = X_train
    data_handler.y_data = y_train
    data_handler.X_data_test = X_test
    data_handler.y_data_test = y_test
  • Example

    Please refer to data_loaders/data_loaders.py for data loading example.

Optimizer

  • Writing your own optimizer
  1. Inherit BaseOptimizer

    BaseOptimizer handles:

    • Optimization procedure
    • Model saving and loading
    • Report saving
  2. Implementing abstract methods

    You need to implement fitted_model() which must return fitted model. Optionally you can implement format of train/test reports with create_train_report() and create_test_report().

  • Example

    Please refer to optimizers/optimizers.py for optimizer example.

Model

  • Writing your own model
  1. Inherit BaseModel

    BaseModel handles:

    • Initialization defined in config pipeline
    • Modification of steps
  2. Implementing abstract methods

    You need to implement created_model() which must return created model.

  • Usage

    Initialization of pipeline methods is performed with create_steps(). Steps can be later modified with the use of change_step(). An example on how to change a step is shown bellow where Sequential feature selector is added to the pipeline.

    def __init__(self, pipeline):
        steps = self.create_steps(pipeline)
    
        rf = RandomForestRegressor(random_state=1)
        clf = TransformedTargetRegressor(regressor=rf,
                                        func=np.log1p,
                                        inverse_func=np.expm1)
        sfs = SequentialFeatureSelector(clf, n_features_to_select=2, cv=3)
    
        steps = self.change_step('sfs', sfs, steps)
    
        self.model = Pipeline(steps=steps)

    Beware that in this case 'sfs' needs to be added to pipeline in config file. Otherwise, no step in the pipeline is changed.

  • Example

    Please refer to models/models.py model example.

Roadmap

See open issues to request a feature or report a bug.

Contribution

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

How to start with contribution:

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Feel free to contribute any kind of function or enhancement.

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgements

This project is inspired by the project pytorch-template by Victor Huang. I would like to confess that some functions, architecture and some parts of readme were directly copied from this repo. But to be honest, what should I do - the project is absolutely amazing!

Consider supporting

Do you feel generous today? I am still a student and would make a good use of some extra money :P

Owner
Janez Lapajne
Janez Lapajne
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022