ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Related tags

Machine Learningml4h
Overview

ml4h

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more. The diverse data modalities of biomedicine offer different perspectives on the underlying challenge of understanding human health. For this reason, ml4h is built on a foundation of multimodal multitask modeling, hoping to leverage all available data to help power research and inform clinical care. Our tools help apply clinical research standards to ML models by carefully considering bias and longitudinal outcomes. Our project grew out of efforts at the Broad Institute to make it easy to work with the UK Biobank on the Google Cloud Platform and has since expanded to include proprietary data from academic medical centers. To put cutting-edge AI and ML to use making the world healthier, we're fostering interdisciplinary collaborations across industry and academia. We'd love to work with you too!

ml4h is best described with Five Verbs: Ingest, Tensorize, TensorMap, Model, Evaluate

  • Ingest: collect files onto one system
  • Tensorize: write raw files (XML, DICOM, NIFTI, PNG) into HD5 files
  • TensorMap: tag data (typically from an HD5) with an interpretation and a method for generation
  • ModelFactory: connect TensorMaps with a trainable architectures
  • Evaluate: generate plots that enable domain-driven inspection of models and results

Getting Started

Advanced Topics:

  • Tensorizing Data (going from raw data to arrays suitable for modeling, in ml4h/tensorize/README.md, TENSORIZE.md )

Setting up your local environment

Clone the repo

git clone [email protected]:broadinstitute/ml.git

Setting up your cloud environment (optional; currently only GCP is supported)

Make sure you have installed the Google Cloud SDK (gcloud). With Homebrew, you can use

brew cask install google-cloud-sdk

gcloud config set project your-gcp-project

Conda (Python package manager)

  • Download onto your laptop the Miniconda bash or .pkg installer for Python 3.7 and Mac OS X from here, and run it. If you installed Python via a package manager such as Homebrew, you may want to uninstall that first, to avoid potential conflicts.

  • On your laptop, at the root directory of your ml4h GitHub clone, load the ml4h environment via

    conda env create -f env/ml4h_osx64.yml
    

    If you get an error, try updating your Conda via

    sudo conda update -n base -c defaults conda
    

    If you have get an error while installing gmpy, try installing gmp:

    brew install gmp
    

    The version used at the time of this writing was 4.6.1.

    If you plan to run jupyter locally, you should also (after you have conda activate ml4h, run pip install ~/ml (or wherever you have stored the repo)

  • Activate the environment:

    source activate ml4h
    

You may now run code on your Terminal, like so

python recipes.py --mode ...

Note that recipes require having the right input files in place and running them without proper inputs will not yield meaningful results.

PyCharm (Python IDE if interested)

  • Install PyCharm either directly from here, or download the Toolbox App and have the app install PyCharm. The latter makes PyCharm upgrades easier. It also allows you to manage your JetBrains IDEs from a single place if you have multiple (e.g. IntelliJ for Java/Scala).
  • Launch PyCharm.
  • (Optional) Import the custom settings as described here.
  • Open the project on PyCharm from the File menu by pointing to where you have your GitHub repo.
  • Next, configure your Python interpreter to use the Conda environment you set up previously:
    • Open Preferences from PyCharm -> Preferences....
    • On the upcoming Preferences window's left-hand side, expand Project: ml4h if it isn't already.
    • Highlight Project Interpreter.
    • On the right-hand side of the window, where it says Project Interpreter, find and select your python binary installed by Conda. It should be a path like ~/conda/miniconda3/envs/ml4h/bin/python where conda is the directory you may have selected when installing Conda.
    • For a test run:
      • Open recipes.py (shortcut Shift+Cmd+N if you imported the custom settings).
      • Right-click on if __name__=='__main__' and select Run recipes.
      • You can specify input arguments by expanding the Parameters text box on the window that can be opened using the menu Run -> Edit Configurations....

Setting up a remote VM

To create a VM without a GPU run:

./scripts/vm_launch/launch_instance.sh ${USER}-cpu

With GPU (not recommended unless you need something beefy and expensive)

./scripts/vm_launch/launch_dl_instance.sh ${USER}-gpu

This will take a few moments to run, after which you will have a VM in the cloud. Remember to shut it off from the command line or console when you are not using it!

Now ssh onto your instance (replace with proper machine name, note that you can also use regular old ssh if you have the external IP provided by the script or if you login from the GCP console)

gcloud --project your-gcp-project compute ssh ${USER}-gpu --zone us-central1-a

Next, clone this repo on your instance (you should copy your github key over to the VM, and/or if you have Two-Factor authentication setup you need to generate an SSH key on your VM and add it to your github settings as described here):

git clone [email protected]:broadinstitute/ml.git

Because we don't know everyone's username, you need to run one more script to make sure that you are added as a docker user and that you have permission to pull down our docker instances from GCP's gcr.io. Run this while you're logged into your VM:

./ml/scripts/vm_launch/run_once.sh

Note that you may see warnings like below, but these are expected:

WARNING: Unable to execute `docker version`: exit status 1
This is expected if `docker` is not installed, or if `dockerd` cannot be reached...
Configuring docker-credential-gcr as a registry-specific credential helper. This is only supported by Docker client versions 1.13+
/home/username/.docker/config.json configured to use this credential helper for GCR registries

You need to log out after that (exit) then ssh back in so everything takes effect.

Finish setting up docker, test out a jupyter notebook

Now let's run a Jupyter notebook. On your VM run:

${HOME}/ml/scripts/jupyter.sh -p 8889

Add a -c if you want a CPU version.

This will start a notebook server on your VM. If you a Docker error like

docker: Error response from daemon: driver failed programming external connectivity on endpoint agitated_joliot (1fa914cb1fe9530f6599092c655b7036c2f9c5b362aa0438711cb2c405f3f354): Bind for 0.0.0.0:8888 failed: port is already allocated.

overwrite the default port (8888) like so

${HOME}/ml/scripts/dl-jupyter.sh 8889

The command also outputs two command lines in red. Copy the line that looks like this:

ssh -i ~/.ssh/google_compute_engine -nNT -L 8888:localhost:8888 

Open a terminal on your local machine and paste that command.

If you get a public key error run: gcloud compute config-ssh

Now open a browser on your laptop and go to the URL http://localhost:8888

Contributing code

Want to contribute code to this project? Please see CONTRIBUTING for developer setup and other details.

Command line interface

The ml4h package is designed to be accessable through the command line using "recipes". To get started, please see RECIPE_EXAMPLES.

Owner
Broad Institute
Broad Institute of MIT and Harvard
Broad Institute
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023