Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Overview

Apache Liminal

Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way.

The platform provides the abstractions and declarative capabilities for data extraction & feature engineering followed by model training and serving. Liminal's goal is to operationalize the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production, freeing them from engineering and non-functional tasks, and allowing them to focus on machine learning code and artifacts.

Basics

Using simple YAML configuration, create your own schedule data pipelines (a sequence of tasks to perform), application servers, and more.

Getting Started

A simple getting stated guide for Liminal can be found here

Apache Liminal Documentation

Full documentation of Apache Liminal can be found here

High Level Architecture

High level architecture documentation can be found here

Example YAML config file

---
name: MyLiminalStack
owner: Bosco Albert Baracus
volumes:
  - volume: myvol1
    local:
      path: /Users/me/myvol1
pipelines:
  - pipeline: my_pipeline
    start_date: 1970-01-01
    timeout_minutes: 45
    schedule: 0 * 1 * *
    metrics:
      namespace: TestNamespace
      backends: [ 'cloudwatch' ]
    tasks:
      - task: my_python_task
        type: python
        description: static input task
        image: my_python_task_img
        source: write_inputs
        env_vars:
          NUM_FILES: 10
          NUM_SPLITS: 3
        mounts:
          - mount: mymount
            volume: myvol1
            path: /mnt/vol1
        cmd: python -u write_inputs.py
      - task: my_parallelized_python_task
        type: python
        description: parallelized python task
        image: my_parallelized_python_task_img
        source: write_outputs
        env_vars:
          FOO: BAR
        executors: 3
        mounts:
          - mount: mymount
            volume: myvol1
            path: /mnt/vol1
        cmd: python -u write_inputs.py
services:
  - service:
    name: my_python_server
    type: python_server
    description: my python server
    image: my_server_image
    source: myserver
    endpoints:
      - endpoint: /myendpoint1
        module: my_server
        function: myendpoint1func

Installation

  1. Install this repository (HEAD)
   pip install git+https://github.com/apache/incubator-liminal.git
  1. Optional: set LIMINAL_HOME to path of your choice (if not set, will default to ~/liminal_home)
echo 'export LIMINAL_HOME=' >> ~/.bash_profile && source ~/.bash_profile

Authoring pipelines

This involves at minimum creating a single file called liminal.yml as in the example above.

If your pipeline requires custom python code to implement tasks, they should be organized like this

If your pipeline introduces imports of external packages which are not already a part of the liminal framework (i.e. you had to pip install them yourself), you need to also provide a requirements.txt in the root of your project.

Testing the pipeline locally

When your pipeline code is ready, you can test it by running it locally on your machine.

  1. Ensure you have The Docker engine running locally, and enable a local Kubernetes cluster: Kubernetes configured

And allocate it at least 3 CPUs (under "Resources" in the Docker preference UI).

If you want to execute your pipeline on a remote kubernetes cluster, make sure the cluster is configured using :

kubectl config set-context <your remote kubernetes cluster>
  1. Build the docker images used by your pipeline.

In the example pipeline above, you can see that tasks and services have an "image" field - such as "my_static_input_task_image". This means that the task is executed inside a docker container, and the docker container is created from a docker image where various code and libraries are installed.

You can take a look at what the build process looks like, e.g. here

In order for the images to be available for your pipeline, you'll need to build them locally:

cd </path/to/your/liminal/code>
liminal build

You'll see that a number of outputs indicating various docker images built.

  1. Create a kubernetes local volume
    In case your Yaml includes working with volumes please first run the following command:
cd </path/to/your/liminal/code> 
liminal create
  1. Deploy the pipeline:
cd </path/to/your/liminal/code> 
liminal deploy

Note: after upgrading liminal, it's recommended to issue the command

liminal deploy --clean

This will rebuild the airlfow docker containers from scratch with a fresh version of liminal, ensuring consistency.

  1. Start the server
liminal start
  1. Stop the server
liminal stop
  1. Display the server logs
liminal logs --follow/--tail

Number of lines to show from the end of the log:
liminal logs --tail=10

Follow log output:
liminal logs --follow
  1. Navigate to http://localhost:8080/admin

  2. You should see your pipeline The pipeline is scheduled to run according to the json schedule: 0 * 1 * * field in the .yml file you provided.

  3. To manually activate your pipeline: Click your pipeline and then click "trigger DAG" Click "Graph view" You should see the steps in your pipeline getting executed in "real time" by clicking "Refresh" periodically.

Pipeline activation

Contributing

More information on contributing can be found here

Running Tests (for contributors)

When doing local development and running Liminal unit-tests, make sure to set LIMINAL_STAND_ALONE_MODE=True

Owner
The Apache Software Foundation
The Apache Software Foundation
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022