Educational python for Neural Networks, written in pure Python/NumPy.

Overview

EpyNN

EpyNN is written in pure Python/NumPy.

If you use EpyNN in academia, please cite:

Malard F., Danner L., Rouzies E., Meyer J. G., Lescop E., Olivier-Van Stichelen S. EpyNN: Educational python for Neural Networks, 2021, Submitted.

Documentation

Please visit https://epynn.net/ for extensive documentation.

Purpose

EpyNN is intended for teachers, students, scientists, or more generally anyone with minimal skills in Python programming who wish to understand and build from basic implementations of Neural Network architectures.

Although EpyNN can be used for production, it is meant to be a library of homogeneous architecture templates and practical examples which is expected to save an important amount of time for people who wish to learn, teach or develop from scratch.

Content

EpyNN features scalable, minimalistic and homogeneous implementations of major Neural Network architectures in pure Python/Numpy including:

Model and function rules and definition:

While not enhancing, extending or replacing EpyNN's documentation, series of live examples in Python and Jupyter notebook formats are offered online and within the archive, including:

Reliability

EpyNN has been cross-validated against TensorFlow/Keras API and provides identical results for identical configurations in the limit of float64 precision.

Please see Is EpyNN reliable? for details and executable codes.

Recommended install

  • Linux/MacOS
# Use bash shell
bash

# Clone git repository
git clone https://github.com/Synthaze/EpyNN

# Alternatively, not recommended
# pip3 install EpyNN
# epynn

# Change directory to EpyNN
cd EpyNN

# Install EpyNN dependencies
pip3 install -r requirements.txt

# Export EpyNN path in $PYTHONPATH for current session
export PYTHONPATH=$PYTHONPATH:$PWD

Linux: Permanent export of EpyNN directory path in $PYTHONPATH.

> ~/.bashrc # Source .bashrc to refresh $PYTHONPATH source ~/.bashrc ">
# Append export instruction to the end of .bashrc file
echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bashrc

# Source .bashrc to refresh $PYTHONPATH
source ~/.bashrc

MacOS: Permanent export of EpyNN directory path in $PYTHONPATH.

> ~/.bash_profile # Source .bash_profile to refresh $PYTHONPATH source ~/.bash_profile ">
# Append export instruction to the end of .bash_profile file
echo "export PYTHONPATH=$PYTHONPATH:$PWD" >> ~/.bash_profile

# Source .bash_profile to refresh $PYTHONPATH
source ~/.bash_profile
  • Windows
# Clone git repository
git clone https://github.com/Synthaze/EpyNN

# Alternatively, not recommended
# pip3 install EpyNN
# epynn

# Change directory to EpyNN
chdir EpyNN

# Install EpyNN dependencies
pip3 install -r requirements.txt

# Show full path of EpyNN directory
echo %cd%

Copy the full path of EpyNN directory, then go to: Control Panel > System > Advanced > Environment variable

If you already have PYTHONPATH in the User variables section, select it and click Edit, otherwise click New to add it.

Paste the full path of EpyNN directory in the input field, keep in mind that paths in PYTHONPATH should be comma-separated.

ANSI coloring schemes do work on native Windows10 and later. For prior Windows versions, users should configure their environment to work with ANSI coloring schemes for optimal experience.

Current release

1.0 - Initial release

  • nnlibs contains API sources.
  • nnlive contains live examples in Python and Jupyter notebook formats.
  • https://epynn.net/ contains extensive documentation.

See CHANGELOG.md for past releases.

Project tree

nnlibs

nnlive

You might also like...
A concept I came up which ditches the idea of
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A modular active learning framework for Python
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Comments
  • update train for images

    update train for images

    better to pick first label of each class programmatically otherwise it can change when then set of images changes. In my nb the indexes you had hardcoded were both class 0

    opened by jgmeyerucsd 1
Releases(v1.2)
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022