A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Overview

Sentiment Analysis on Yelp's Dataset

Author: Roberto Sanchez, Talent Path: D1 Group

Docker Deployment:

Deployment of this application can be found here hosted on AWS

Running it locally:

docker pull rsanchez2892/sentiment_analysis_app

Overview

The scope of this capstone is centered around the data processing, exploratory data analysis, and training of a model to predict sentiment on user reviews.

End goal of the model

Business Goals

Create a model to be able to be used in generating sentiment on reviews or comments found in external / internal websites to give insights on how people feel about certain topics.

This could give the company insights not easily available on sites where ratings are required or for internal use to determine sentiment on blogs or comments.

Business Applications

By utilizing this model, the business can use it for the following purposes:

External:

  • Monitoring Brand and Reputation online
  • Product Research

Internal:

  • Customer Support
  • Customer Feedback
  • Employee Satisfaction

Currently method to achieving this is by using outside resources which come at a cost and increases risk for leaking sensitive data to the public. This product will bypass these outside resources and give the company the ability to do it in house.

Model Deployment

Link: Review Analyzer

After running multiple models and comparing accuracy, I found that the LinearSVC model is a viable candidate to be used in production for analyzing reviews of services or food.

Classification Report / Confusion Matrix:

Classification Report

Technology Stack

I have been using these technologies for this project:

  • Jupyter Notebook - Version 6.3.0
    • Used for most of the data processing, EDA, and model training.
  • Python - Version 3.8.8
    • The main language this project will be done in.
  • Scikit-learn - Version 0.24
    • Utilizing metrics reports and certain models.
  • Postgres - Version 13
    • Main database application used to store this data.
  • Flask - Version 1.1.2
    • Main backend technology to host a usable version of this project to the public.
  • GitHub
    • Versioning control and online documentation
  • Heroku
    • Online cloud platform to host this application for public use

Data Processing

This capstone uses the Yelp dataset found on Kaggle which comprises of multiple files:

  • Business Data
  • Check-in Data
  • Review Data
  • Tips Data
  • User Data

Stage 1 - Read in From JSON files into Postgres

Overview

  • Read in JSON files
  • General observations on the features found in each file
  • Modifying feature names to meet Postgres naming convention
  • Normalized the data to prepare for import to Postgres
  • Saved copies of each table as CSV file for backup incase Database goes down
  • Exported data into Postgres

As stated above, Kaggle provided several JSON files with a large amount of data that needed to be stored in a location for easy access and provide a quick way to query data on the fly. As the files were read in Jupyter notebook a general observation was made to the feature names and amount each file contained to see what data I was dealing with along with the types associated with them. The business data contained a strange number of attributes that had to be broken up into separate data frames to be normalized for Postgres.

Stage 2 - Pre-Processing Data

Overview

  • Read in data from Postgres
  • IDing Null Values
  • Removing Sparse features
  • Saved data frame as a pickle to be used in model training

This stage I performed elementary data analysis where I analyze any null values, see the distribution of my ratings and review lengths.

Stage 3 - Cleaning Up Data

Overview

  • Replace contractions with expanded versions
  • Lemmatized text
  • Removed special characters, dates, emails, and URLs
  • Removed stop words
  • Remove non-english text
  • Normalized text

Exploratory Data Analysis

Analyzing Null Values in Dataset

Below is a visualization of the data provided by Kaggle showing which features have "NaN " values. Its is clear that the review ratings (review_stars) and reviews (text) are fully populated. Some of the business attributes are sparse but have enough values to be useful for other things. Note several other features were dropped in the Data Processing since they did not provide any insights for the scope of this project.

Heatmap of several million rows of data.

Looking Closer at the Ratings (review_stars)

This is a sample of 2 million rows from the original 8 million in the dataset. This distribution of ratings has a left skew on it where most of the reviews are 4 to 5 stars.

A bar graph showing the distribution of ratings between 1 to 5. there is a significant amount of 5 stars compared to 1-3 combined.

I simplified the ratings to better categorize the sentiment of the review by grouping 1 and 2 star reviews as 'negative', 3 star review as 'neutral', and 4 and 5 star reviews as 'positive'.

Simplified Barchar showing just the negative, neutral, and positive ratings

Looking Closer at the Reviews (text)

To analyze the text, I've calculated the length of each review in the sample and plotted a distribution graph showing them the number of characters of each review. The statistics were that the median review was approx. 606 characters with a range of 0 through 5000 characters.

Showing a distribution chart of the length of the reviews. Clearly the distribution skews right with a median around 400 characters.

A closer inspection on the range 0 - 2000 we can see that most of the reviews are around this general area.

A zoomed in version of the same distribution chart now focusing on 0 - 2000 characters

In order to produce a viable word cloud, I've had to process all of the text in the sample to remove special characters and stop words from NLTK to produce a viable string to be used in word cloud. Below is a visualization of all of the key words found in the positive reviews.

Created a word cloud from the positive words after cleaning

As expected, words like "perfect", "great", "good", "great place", and "highly recommend" came out on top.

A word cloud showing all the words from the negative reviews

On the negative word cloud, words like "bad", "customer service", "never", "horrible", and "awful" are appearing on the word cloud.

Model Training

Model Selection

model selection flow chart

These four models were chosen to be trained with this data. Each of these models had a pipeline created with TfidfVectorizer.

Model Training

  • Run a StratifiedKFold with a 5 fold split and analyze the average scores and classification reports
    • Get an average accuracy of the model for comparison
  • Create a single model to generate a confusion matrix
  • Test out model on a handful of examples

Below is the average metrics after running 5 fold cross validation on LinearSVC

average metrics for linearSVC model

Testing Model

After the model was trained, I fed it some reviews I found online to test out whether or not the model can properly detect the right sentiment. The following reviews are ordered as "Negative", "Neutral", and "Positive":

new_test_data = [
    "This was the worst place I've ever eaten at. The staff was rude and did not take my order until after i pulled out my wallet.",
    "The food was alright, nothing special about this place. I would recommend going elsewhere.",
    "I had a pleasent time with kimberly at the granny shack. The food was amazing and very family friendly.",
]
res = model.prediction(new_test_data)

Below is the results of the prediction, notice that the neutral review has been labeled as negative. This makes sense since the model has a poor recall for neutral reviews as shown in the classification report.

Results from the prediction

End Notes

There are some improvements to be made such as the follow:

  • Balancing the data
    • This can be seen in the confusion matrix for the candidate models and other models created that the predictions come out more positive than negative or neutral.
    • While having poor scores in the neutral category, the most important features are found in the negative and positive predictions for business applications.
  • Hyper-parametrization improvement
    • Logistic Regression and Multinomial NB models produced models within a reasonable time frame while returning reasonable scores. Random Forrest Classifier and SVM took a significant amount of time to produce just one iteration. In order to produce results from this model StratifiedKFold was not used in these two models. Changing SVM to LinearSVC improved performance dramatically and replaced the SVM model and outperformed Logistic Regression which was the original candidate model.
Owner
Roberto Sanchez
Full Stack Web Developer / Data Science Startup
Roberto Sanchez
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022