Distributed Asynchronous Hyperparameter Optimization in Python

Related tags

Deep Learninghyperopt
Overview

Hyperopt: Distributed Hyperparameter Optimization

Build Status PyPI version Anaconda-Server Badge

Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions.

Getting started

Install hyperopt from PyPI

$ pip install hyperopt

to run your first example

# define an objective function
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2

# define a search space
from hyperopt import hp
space = hp.choice('a',
    [
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),
        ('case 2', hp.uniform('c2', -10, 10))
    ])

# minimize the objective over the space
from hyperopt import fmin, tpe, space_eval
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print(best)
# -> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
# -> ('case 2', 0.01420615366247227}

Contributing

Setup (based on this)

If you're a developer and wish to contribute, please follow these steps:

  1. Create an account on GitHub if you do not already have one.

  2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code under your account on the GitHub user account. For more details on how to fork a repository see this guide.

  3. Clone your fork of the hyperopt repo from your GitHub account to your local disk:

    $ git clone https://github.com/<github username>/hyperopt.git
    $ cd hyperopt

Setup a python 3.x environment for dependencies

  1. Create environment with:
    $ python3 -m venv my_env or $ python -m venv my_env or with conda:
    $ conda create -n my_env python=3

  2. Activate the environment:
    $ source my_env/bin/activate
    or with conda:
    $ conda activate my_env

  3. Install dependencies for extras (you'll need these to run pytest): Linux/UNIX: $ pip install -e '.[MongoTrials, SparkTrials, ATPE, dev]'

    or Windows:

    pip install -e .[MongoTrials]
    pip install -e .[SparkTrials]
    pip install -e .[ATPE]
    pip install -e .[dev]
  4. Add the upstream remote. This saves a reference to the main hyperopt repository, which you can use to keep your repository synchronized with the latest changes:

    $ git remote add upstream https://github.com/hyperopt/hyperopt.git

    You should now have a working installation of hyperopt, and your git repository properly configured. The next steps now describe the process of modifying code and submitting a PR:

  5. Synchronize your master branch with the upstream master branch:

    $ git checkout master
    $ git pull upstream master
  6. Create a feature branch to hold your development changes:

    $ git checkout -b my_feature

    and start making changes. Always use a feature branch. It’s good practice to never work on the master branch!

Formatting

  1. We recommend to use Black to format your code before submitting a PR which is installed automatically in step 4.

  2. Then, once you commit ensure that git hooks are activated (Pycharm for example has the option to omit them). This will run black automatically on all files you modified, failing if there are any files requiring to be blacked. In case black does not run execute the following:

    $ black {source_file_or_directory}
  3. Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re done editing, add changed files using git add and then git commit:

    $ git add modified_files
    $ git commit -m "my first hyperopt commit"

Running tests

  1. The tests for this project use PyTest and can be run by calling pytest.

  2. Record your changes in Git, then push the changes to your GitHub account with:

    $ git push -u origin my_feature

Note that dev dependencies require python 3.6+.

Algorithms

Currently three algorithms are implemented in hyperopt:

Hyperopt has been designed to accommodate Bayesian optimization algorithms based on Gaussian processes and regression trees, but these are not currently implemented.

All algorithms can be parallelized in two ways, using:

Documentation

Hyperopt documentation can be found here, but is partly still hosted on the wiki. Here are some quick links to the most relevant pages:

Related Projects

Examples

See projects using hyperopt on the wiki.

Announcements mailing list

Announcements

Discussion mailing list

Discussion

Cite

If you use this software for research, please cite the paper (http://proceedings.mlr.press/v28/bergstra13.pdf) as follows:

Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. TProc. of the 30th International Conference on Machine Learning (ICML 2013), June 2013, pp. I-115 to I-23.

Thanks

This project has received support from

  • National Science Foundation (IIS-0963668),
  • Banting Postdoctoral Fellowship program,
  • National Science and Engineering Research Council of Canada (NSERC),
  • D-Wave Systems, Inc.
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021