Distributed Asynchronous Hyperparameter Optimization in Python

Related tags

Deep Learninghyperopt
Overview

Hyperopt: Distributed Hyperparameter Optimization

Build Status PyPI version Anaconda-Server Badge

Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which may include real-valued, discrete, and conditional dimensions.

Getting started

Install hyperopt from PyPI

$ pip install hyperopt

to run your first example

# define an objective function
def objective(args):
    case, val = args
    if case == 'case 1':
        return val
    else:
        return val ** 2

# define a search space
from hyperopt import hp
space = hp.choice('a',
    [
        ('case 1', 1 + hp.lognormal('c1', 0, 1)),
        ('case 2', hp.uniform('c2', -10, 10))
    ])

# minimize the objective over the space
from hyperopt import fmin, tpe, space_eval
best = fmin(objective, space, algo=tpe.suggest, max_evals=100)

print(best)
# -> {'a': 1, 'c2': 0.01420615366247227}
print(space_eval(space, best))
# -> ('case 2', 0.01420615366247227}

Contributing

Setup (based on this)

If you're a developer and wish to contribute, please follow these steps:

  1. Create an account on GitHub if you do not already have one.

  2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code under your account on the GitHub user account. For more details on how to fork a repository see this guide.

  3. Clone your fork of the hyperopt repo from your GitHub account to your local disk:

    $ git clone https://github.com/<github username>/hyperopt.git
    $ cd hyperopt

Setup a python 3.x environment for dependencies

  1. Create environment with:
    $ python3 -m venv my_env or $ python -m venv my_env or with conda:
    $ conda create -n my_env python=3

  2. Activate the environment:
    $ source my_env/bin/activate
    or with conda:
    $ conda activate my_env

  3. Install dependencies for extras (you'll need these to run pytest): Linux/UNIX: $ pip install -e '.[MongoTrials, SparkTrials, ATPE, dev]'

    or Windows:

    pip install -e .[MongoTrials]
    pip install -e .[SparkTrials]
    pip install -e .[ATPE]
    pip install -e .[dev]
  4. Add the upstream remote. This saves a reference to the main hyperopt repository, which you can use to keep your repository synchronized with the latest changes:

    $ git remote add upstream https://github.com/hyperopt/hyperopt.git

    You should now have a working installation of hyperopt, and your git repository properly configured. The next steps now describe the process of modifying code and submitting a PR:

  5. Synchronize your master branch with the upstream master branch:

    $ git checkout master
    $ git pull upstream master
  6. Create a feature branch to hold your development changes:

    $ git checkout -b my_feature

    and start making changes. Always use a feature branch. It’s good practice to never work on the master branch!

Formatting

  1. We recommend to use Black to format your code before submitting a PR which is installed automatically in step 4.

  2. Then, once you commit ensure that git hooks are activated (Pycharm for example has the option to omit them). This will run black automatically on all files you modified, failing if there are any files requiring to be blacked. In case black does not run execute the following:

    $ black {source_file_or_directory}
  3. Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re done editing, add changed files using git add and then git commit:

    $ git add modified_files
    $ git commit -m "my first hyperopt commit"

Running tests

  1. The tests for this project use PyTest and can be run by calling pytest.

  2. Record your changes in Git, then push the changes to your GitHub account with:

    $ git push -u origin my_feature

Note that dev dependencies require python 3.6+.

Algorithms

Currently three algorithms are implemented in hyperopt:

Hyperopt has been designed to accommodate Bayesian optimization algorithms based on Gaussian processes and regression trees, but these are not currently implemented.

All algorithms can be parallelized in two ways, using:

Documentation

Hyperopt documentation can be found here, but is partly still hosted on the wiki. Here are some quick links to the most relevant pages:

Related Projects

Examples

See projects using hyperopt on the wiki.

Announcements mailing list

Announcements

Discussion mailing list

Discussion

Cite

If you use this software for research, please cite the paper (http://proceedings.mlr.press/v28/bergstra13.pdf) as follows:

Bergstra, J., Yamins, D., Cox, D. D. (2013) Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. TProc. of the 30th International Conference on Machine Learning (ICML 2013), June 2013, pp. I-115 to I-23.

Thanks

This project has received support from

  • National Science Foundation (IIS-0963668),
  • Banting Postdoctoral Fellowship program,
  • National Science and Engineering Research Council of Canada (NSERC),
  • D-Wave Systems, Inc.
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022