🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Overview

Knock Knock

made-with-python Downloads Downloads GitHub stars

A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of code.

When training deep learning models, it is common to use early stopping. Apart from a rough estimate, it is difficult to predict when the training will finish. Thus, it can be interesting to set up automatic notifications for your training. It is also interesting to be notified when your training crashes in the middle of the process for unexpected reasons.

Installation

Install with pip or equivalent.

pip install knockknock

This code has only been tested with Python >= 3.6.

Usage

The library is designed to be used in a seamless way, with minimal code modification: you only need to add a decorator on top your main function call. The return value (if there is one) is also reported in the notification.

There are currently twelve ways to setup notifications:

Platform External Contributors
email -
Slack -
Telegram -
Microsoft Teams @noklam
Text Message @abhishekkrthakur
Discord @watkinsm
Desktop @atakanyenel @eyalmazuz
Matrix @jcklie
Amazon Chime @prabhakar267
DingTalk @wuutiing
RocketChat @radao
WeChat Work @jcyk

Email

The service relies on Yagmail a GMAIL/SMTP client. You'll need a gmail email address to use it (you can setup one here, it's free). I recommend creating a new one (rather than your usual one) since you'll have to modify the account's security settings to allow the Python library to access it by Turning on less secure apps.

Python

", " "], sender_email=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import email_sender

@email_sender(recipient_emails=["
       
       
        
        "
       
       , "
       
       
        
        "
       
       ], sender_email="
       
       
        
        "
       
       )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock email \
    --recipient-emails <[email protected]>,<[email protected]> \
    --sender-email <grandma'[email protected]> \
    sleep 10

If sender_email is not specified, then the first email in recipient_emails will be used as the sender's email.

Note that launching this will asks you for the sender's email password. It will be safely stored in the system keyring service through the keyring Python library.

Slack

Similarly, you can also use Slack to get notifications. You'll have to get your Slack room webhook URL and optionally your user id (if you want to tag yourself or someone else).

Python

" @slack_sender(webhook_url=webhook_url, channel=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import slack_sender

webhook_url = "
     
     
      
      "
     
     
@slack_sender(webhook_url=webhook_url, channel="
      
      
       
       "
      
      )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

You can also specify an optional argument to tag specific people: user_mentions=[ , ] .

Command-line

knockknock slack \
    --webhook-url <webhook_url_to_your_slack_room> \
    --channel <your_favorite_slack_channel> \
    sleep 10

You can also specify an optional argument to tag specific people: --user-mentions , .

Telegram

You can also use Telegram Messenger to get notifications. You'll first have to create your own notification bot by following the three steps provided by Telegram here and save your API access TOKEN.

Telegram bots are shy and can't send the first message so you'll have to do the first step. By sending the first message, you'll be able to get the chat_id required (identification of your messaging room) by visiting https://api.telegram.org/bot /getUpdates and get the int under the key message['chat']['id'].

Python

", chat_id=CHAT_ID) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import telegram_sender

CHAT_ID: int = <your_messaging_room_id>
@telegram_sender(token="
    
    
     
     "
    
    , chat_id=CHAT_ID)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock telegram \
    --token <your_api_token> \
    --chat-id <your_messaging_room_id> \
    sleep 10

Microsoft Teams

Thanks to @noklam, you can also use Microsoft Teams to get notifications. You'll have to get your Team Channel webhook URL.

Python

") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10) return {'loss': 0.9} # Optional return value ">
from knockknock import teams_sender

@teams_sender(token="
     
     
      
      "
     
     )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock teams \
    --webhook-url <webhook_url_to_your_teams_channel> \
    sleep 10

You can also specify an optional argument to tag specific people: user_mentions=[ , ] .

Text Message (SMS)

Thanks to @abhishekkrthakur, you can use Twilio to send text message notifications. You'll have to setup a Twilio account here, which is paid service with competitive prices: for instance in the US, getting a new number and sending one text message through this service respectively cost $1.00 and $0.0075. You'll need to get (a) a phone number, (b) your account SID and (c) your authentification token. Some detail here.

Python

" AUTH_TOKEN: str = " " @sms_sender(account_sid=ACCOUNT_SID, auth_token=AUTH_TOKEN, recipient_number=" ", sender_number=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10) return {'loss': 0.9} # Optional return value ">
from knockknock import sms_sender

ACCOUNT_SID: str = "
       
       
        
        "
       
       
AUTH_TOKEN: str = "
       
       
        
        "
       
       
@sms_sender(account_sid=ACCOUNT_SID, auth_token=AUTH_TOKEN, recipient_number="
        
        
         
         "
        
        , sender_number="
        
        
         
         "
        
        )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock sms \
    --account-sid <your_account_sid> \
    --auth-token <your_account_auth_token> \
    --recipient-number <recipient_number> \
    --sender-number <sender_number>
    sleep 10

Discord

Thanks to @watkinsm, you can also use Discord to get notifications. You'll just have to get your Discord channel's webhook URL.

Python

" @discord_sender(webhook_url=webhook_url) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import discord_sender

webhook_url = "
    
    
     
     "
    
    
@discord_sender(webhook_url=webhook_url)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock discord \
    --webhook-url <webhook_url_to_your_discord_channel> \
    sleep 10

Desktop Notification

You can also get notified from a desktop notification. It is currently only available for MacOS and Linux and Windows 10. For Linux it uses the nofity-send command which uses libnotify, In order to use libnotify, you have to install a notification server. Cinnamon, Deepin, Enlightenment, GNOME, GNOME Flashback and KDE Plasma use their own implementations to display notifications. In other desktop environments, the notification server needs to be launched using your WM's/DE's "autostart" option.

Python

from knockknock import desktop_sender

@desktop_sender(title="Knockknock Desktop Notifier")
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {"loss": 0.9}

Command Line

knockknock desktop \
    --title 'Knockknock Desktop Notifier' \
    sleep 2

Matrix

Thanks to @jcklie, you can send notifications via Matrix. The homeserver is the server on which your user that will send messages is registered. Do not forget the schema for the URL (http or https). You'll have to get the access token for a bot or your own user. The easiest way to obtain it is to look into Riot looking in the riot settings, Help & About, down the bottom is: Access Token: . You also need to specify a room alias to which messages are sent. To obtain the alias in Riot, create a room you want to use, then open the room settings under Room Addresses and add an alias.

Python

" # e.g. https://matrix.org TOKEN = " " # e.g. WiTyGizlr8ntvBXdFfZLctyY ROOM = "
from knockknock import matrix_sender

HOMESERVER = "
      
      
       
       "
      
       # e.g. https://matrix.org
TOKEN = "
      
      
       
       "
      
                    # e.g. WiTyGizlr8ntvBXdFfZLctyY
ROOM = "
      
                           # e.g. #knockknock:matrix.org

@matrix_sender(homeserver=HOMESERVER, token=TOKEN, room=ROOM)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock matrix \
    --homeserver <homeserver> \
    --token <token> \
    --room <room> \
    sleep 10

Amazon Chime

Thanks to @prabhakar267, you can also use Amazon Chime to get notifications. You'll have to get your Chime room webhook URL.

Python

") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10) return {'loss': 0.9} # Optional return value ">
from knockknock import chime_sender

@chime_sender(webhook_url="
     
     
      
      "
     
     )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock chime \
    --webhook-url <webhook_url_to_your_chime_room> \
    sleep 10

You can also specify an optional argument to tag specific people: user_mentions=[ , ] .

DingTalk

DingTalk is now supported thanks to @wuutiing. Given DingTalk chatroom robot's webhook url and secret/keywords(at least one of them are set when creating a chatroom robot), your notifications will be sent to reach any one in that chatroom.

Python

" @dingtalk_sender(webhook_url=webhook_url, secret=" ", keywords=[" "]) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import dingtalk_sender

webhook_url = "
      
      
       
       "
      
      
@dingtalk_sender(webhook_url=webhook_url, secret="
       
       
        
        "
       
       , keywords=["
       
       
        
        "
       
       ])
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock dingtalk \
    --webhook-url <webhook_url_to_your_dingtalk_chatroom_robot> \
    --secret <your_robot_secret_if_set> \
    sleep 10

You can also specify an optional argument to at specific people: user_mentions=[" "] .

RocketChat

You can use RocketChat to get notifications. You'll need the following before you can post notifications:

  • a RocketChat server e.g. rocketchat.yourcompany.com
  • a RocketChat user id (you'll be able to view your user id when you create a personal access token in the next step)
  • a RocketChat personal access token (create one as per this guide)
  • a RocketChat channel

Python

", rocketchat_user_id=" ", rocketchat_auth_token=" ", channel=" ") def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import rocketchat_sender

@rocketchat_sender(
    rocketchat_server_url="
        
        
         
         "
        
        ,
    rocketchat_user_id="
        
        
         
         "
        
        ,
    rocketchat_auth_token="
        
        
         
         "
        
        ,
    channel="
        
        
         
         "
        
        )
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

You can also specify two optional arguments:

  • to tag specific users: user_mentions=[ , ]
  • to use an alias for the notification: alias="My Alias"

Command-line

knockknock rocketchat \
    --rocketchat-server-url <url_to_your_rocketchat_server> \
    --rocketchat-user-id <your_rocketchat_user_id> \
    --rocketchat-auth-token <your_rocketchat_auth_token> \
    --channel <channel_name> \
    sleep 10

WeChat Work

WeChat Work is now supported thanks to @jcyk. Given WeChat Work chatroom robot's webhook url, your notifications will be sent to reach anyone in that chatroom.

Python

" @wechat_sender(webhook_url=webhook_url) def train_your_nicest_model(your_nicest_parameters): import time time.sleep(10000) return {'loss': 0.9} # Optional return value ">
from knockknock import wechat_sender

webhook_url = "
    
    
     
     "
    
    
@wechat_sender(webhook_url=webhook_url)
def train_your_nicest_model(your_nicest_parameters):
    import time
    time.sleep(10000)
    return {'loss': 0.9} # Optional return value

Command-line

knockknock wechat \
    --webhook-url <webhook_url_to_your_wechat_work_chatroom_robot> \
    sleep 10

You can also specify an optional argument to tag specific people: user-mentions=[" "] and/or user-mentions-mobile=[" "] .

Note on distributed training

When using distributed training, a GPU is bound to its process using the local rank variable. Since knockknock works at the process level, if you are using 8 GPUs, you would get 8 notifications at the beginning and 8 notifications at the end... To circumvent that, except for errors, only the master process is allowed to send notifications so that you receive only one notification at the beginning and one notification at the end.

Note: In PyTorch, the launch of torch.distributed.launch sets up a RANK environment variable for each process (see here). This is used to detect the master process, and for now, the only simple way I came up with. Unfortunately, this is not intended to be general for all platforms but I would happily discuss smarter/better ways to handle distributed training in an issue/PR.

Owner
Hugging Face
The AI community building the future.
Hugging Face
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023