Traingenerator 🧙 A web app to generate template code for machine learning ✨

Overview

Traingenerator

🧙   A web app to generate template code for machine learning

Gitter Heroku Code style: black



🎉 Traingenerator is now live! 🎉

Try it out:
https://traingenerator.jrieke.com


Generate custom template code for PyTorch & sklearn, using a simple web UI built with streamlit. Traingenerator offers multiple options for preprocessing, model setup, training, and visualization (using Tensorboard or comet.ml). It exports to .py, Jupyter Notebook, or Google Colab. The perfect tool to jumpstart your next machine learning project!


For updates, follow me on Twitter, and if you like this project, please consider sponsoring




Adding new templates

You can add your own template in 4 easy steps (see below), without changing any code in the app itself. Your new template will be automatically discovered by Traingenerator and shown in the sidebar. That's it! 🎈

Want to share your magic? 🧙 PRs are welcome! Please have a look at CONTRIBUTING.md and write on Gitter.

Some ideas for new templates: Keras/Tensorflow, Pytorch Lightning, object detection, segmentation, text classification, ...

  1. Create a folder under ./templates. The folder name should be the task that your template solves (e.g. Image classification). Optionally, you can add a framework name (e.g. Image classification_PyTorch). Both names are automatically shown in the first two dropdowns in the sidebar (see image). Tip: Copy the example template to get started more quickly.
  2. Add a file sidebar.py to the folder (see example). It needs to contain a method show(), which displays all template-specific streamlit components in the sidebar (i.e. everything below Task) and returns a dictionary of user inputs.
  3. Add a file code-template.py.jinja to the folder (see example). This Jinja2 template is used to generate the code. You can write normal Python code in it and modify it (through Jinja) based on the user inputs in the sidebar (e.g. insert a parameter value from the sidebar or show different code parts based on the user's selection).
  4. Optional: Add a file test-inputs.yml to the folder (see example). This simple YAML file should define a few possible user inputs that can be used for testing. If you run pytest (see below), it will automatically pick up this file, render the code template with its values, and check that the generated code runs without errors. This file is optional – but it's required if you want to contribute your template to this repo.

Installation

Note: You only need to install Traingenerator if you want to contribute or run it locally. If you just want to use it, go here.

git clone https://github.com/jrieke/traingenerator.git
cd traingenerator
pip install -r requirements.txt

Optional: For the "Open in Colab" button to work you need to set up a Github repo where the notebook files can be stored (Colab can only open public files if they are on Github). After setting up the repo, create a file .env with content:

GITHUB_TOKEN=<your-github-access-token>
REPO_NAME=<user/notebooks-repo>

If you don't set this up, the app will still work but the "Open in Colab" button will only show an error message.

Running locally

streamlit run app/main.py

Make sure to run always from the traingenerator dir (not from the app dir), otherwise the app will not be able to find the templates.

Deploying to Heroku

First, install heroku and login. To create a new deployment, run inside traingenerator:

heroku create
git push heroku main
heroku open

To update the deployed app, commit your changes and run:

git push heroku main

Optional: If you set up a Github repo to enable the "Open in Colab" button (see above), you also need to run:

heroku config:set GITHUB_TOKEN=
   
    
heroku config:set REPO_NAME=
    

    
   

Testing

First, install pytest and required plugins via:

pip install -r requirements-dev.txt

To run all tests:

pytest ./tests

Note that this only tests the code templates (i.e. it renders them with different input values and makes sure that the code executes without error). The streamlit app itself is not tested at the moment.

You can also test an individual template by passing the name of the template dir to --template, e.g.:

pytest ./tests --template "Image classification_scikit-learn"

The mage image used in Traingenerator is from Twitter's Twemoji library and released under Creative Commons Attribution 4.0 International Public License.

Owner
Johannes Rieke
Product manager dev experience @streamlit
Johannes Rieke
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022