PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

Overview

EGVSR-PyTorch

GitHub | Gitee码云


VSR x4: EGVSR; Upscale x4: Bicubic Interpolation

Contents

Introduction

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the official implementation ESPCN and TecoGAN for more information.

Features

  • Unified Framework: This repo provides a unified framework for various state-of-the-art DL-based VSR methods, such as VESPCN, SOFVSR, FRVSR, TecoGAN and our EGVSR.
  • Multiple Test Datasets: This repo offers three types of video datasets for testing, i.e., standard test dataset -- Vid4, Tos3 used in TecoGAN and our new dataset -- Gvt72 (selected from Vimeo site and including more scenes).
  • Better Performance: This repo provides model with faster inferencing speed and better overall performance than prior methods. See more details in Benchmarks section.

Dependencies

  • Ubuntu >= 16.04
  • NVIDIA GPU + CUDA & CUDNN
  • Python 3
  • PyTorch >= 1.0.0
  • Python packages: numpy, matplotlib, opencv-python, pyyaml, lmdb (requirements.txt & req.txt)
  • (Optional) Matlab >= R2016b

Datasets

A. Training Dataset

Download the official training dataset based on the instructions in TecoGAN-TensorFlow, rename to VimeoTecoGAN and then place under ./data.

B. Testing Datasets

  • Vid4 -- Four video sequences: city, calendar, foliage and walk;
  • Tos3 -- Three video sequences: bridge, face and room;
  • Gvt72 -- Generic VSR Test Dataset: 72 video sequences (including natural scenery, culture scenery, streetscape scene, life record, sports photography, etc, as shown below)

You can get them at 百度网盘 (提取码:8tqc) and put them into 📁 Datasets. The following shows the structure of the above three datasets.

data
  ├─ Vid4
    ├─ GT                # Ground-Truth (GT) video sequences
      └─ calendar
        ├─ 0001.png
        └─ ...
    ├─ Gaussian4xLR      # Low Resolution (LR) video sequences in gaussian degradation and x4 down-sampling
      └─ calendar
        ├─ 0001.png
        └─ ...
  └─ ToS3
    ├─ GT
    └─ Gaussian4xLR
  └─ Gvt72
    ├─ GT
    └─ Gaussian4xLR

Benchmarks

Experimental Environment

Version Info.
System Ubuntu 18.04.5 LTS X86_64
CPU Intel i9-9900 3.10GHz
GPU Nvidia RTX 2080Ti 11GB GDDR6
Memory DDR4 2666 32GB×2

A. Test on Vid4 Dataset


1.LR 2.VESPCN 3.SOFVSR 4.DUF 5.Ours:EGVSR 6.GT
Objective metrics for visual quality evaluation[1]

B. Test on Tos3 Dataset


1.VESPCN 2.SOFVSR 3. FRVSR 4.TecoGAN 5.Ours:EGVSR 6.GT

C. Test on Gvt72 Dataset


1.LR 2.VESPCN 3.SOFVSR 4.DUF 5.Ours:EGVSR 6.GT
Objective metrics for visual quality and temporal coherence evaluation[1]

D. Optical-Flow based Motion Compensation

Please refer to FLOW_walk, FLOW_foliage and FLOW_city.

E. Comprehensive Performance


Comparison of various SOTA VSR model on video quality score and speed performance[3]

[1] ⬇️ :smaller value for better performance, ⬆️ : on the contrary; Red: stands for Top1, Blue: Top2. [2] The calculation formula of video quality score considering both spatial and temporal domain, using lambda1=lambda2=lambda3=1/3. [3] FLOPs & speed are computed on RGB with resolution 960x540 to 3840x2160 (4K) on NVIDIA GeForce GTX 2080Ti GPU.

License & Citations

This EGVSR project is released under the MIT license. See more details in LICENSE. The provided implementation is strictly for academic purposes only. If EGVSR helps your research or work, please consider citing EGVSR. The following is a BibTeX reference:

@misc{thmen2021egvsr,
  author =       {Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang and He Li},
  title =        {EGVSR},
  howpublished = {\url{https://github.com/Thmen/EGVSR}},
  year =         {2021}
}

Yanpeng Cao, Chengcheng Wang, Changjun Song, Yongming Tang and He Li. EGVSR. https://github.com/Thmen/EGVSR, 2021.

Acknowledgements

This code is built on the following projects. We thank the authors for sharing their codes.

  1. ESPCN
  2. BasicSR
  3. VideoSuperResolution
  4. TecoGAN-PyTorch
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
3 Apr 20, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021