A Python library for Deep Probabilistic Modeling

Overview

MIT license PyPI version

Logo

Abstract

DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows and their possible combinations for probabilistic inference. Some models are implemented using PyTorch for fast training and inference on GPUs.

Features

  • Inference algorithms for SPNs. 1 4
  • Learning algorithms for SPNs structure. 1 2 3 4
  • Chow-Liu Trees (CLT) as SPN leaves. 11 12
  • Batch Expectation-Maximization (EM) for SPNs with arbitrarily leaves. 13 14
  • Structural marginalization and pruning algorithms for SPNs.
  • High-order moments computation for SPNs.
  • JSON I/O operations for SPNs and CLTs. 4
  • Plotting operations based on NetworkX for SPNs and CLTs. 4
  • Randomized And Tensorized SPNs (RAT-SPNs) using PyTorch. 5
  • Masked Autoregressive Flows (MAFs) using PyTorch. 6
  • Real Non-Volume-Preserving (RealNVP) and Non-linear Independent Component Estimation (NICE) flows. 7 8
  • Deep Generalized Convolutional SPNs (DGC-SPNs) using PyTorch. 10

The collection of implemented models is summarized in the following table. The supported data dimensionality for each model is showed in the Input Dimensionality column. Moreover, the Supervised column tells which model is suitable for a supervised learning task, other than density estimation task.

Model Description Input Dimensionality Supervised
Binary-CLT Binary Chow-Liu Tree (CLT) D
SPN Vanilla Sum-Product Network, using LearnSPN D
RAT-SPN Randomized and Tensorized Sum-Product Network D
DGC-SPN Deep Generalized Convolutional Sum-Product Network (1, D, D); (3, D, D)
MAF Masked Autoregressive Flow D
NICE Non-linear Independent Components Estimation Flow (1, H, W); (3, H, W)
RealNVP Real-valued Non-Volume-Preserving Flow (1, H, W); (3, H, W)

Installation & Documentation

The library can be installed either from PIP repository or by source code.

# Install from PIP repository
pip install deeprob-kit
# Install from `main` git branch
pip install -e git+https://github.com/deeprob-org/[email protected]#egg=deeprob-kit

The documentation is generated automatically by Sphinx (with Read-the-Docs theme), and it's hosted using GitHub Pages at deeprob-kit.

Datasets and Experiments

A collection of 29 binary datasets, which most of them are used in Probabilistic Circuits literature, can be found at UCLA-StarAI-Binary-Datasets.

Moreover, a collection of 5 continuous datasets, commonly present in works regarding Normalizing Flows, can be found at MAF-Continuous-Datasets.

After downloading them, the datasets must be stored in the experiments/datasets directory to be able to run the experiments (and Unit Tests). The experiments scripts are available in the experiments directory and can be launched using the command line by specifying the dataset and hyper-parameters.

Code Examples

A collection of code examples can be found in the examples directory. However, the examples are not intended to produce state-of-the-art results, but only to present the library.

The following table contains a description about them and a code complexity ranging from one to three stars. The Complexity column consists of a measure that roughly represents how many features of the library are used, as well as the expected time required to run the script.

Example Description Complexity
naive_model.py Learn, evaluate and print statistics about a naive factorized model.
spn_plot.py Instantiate, prune, marginalize and plot some SPNs.
clt_plot.py Learn a Binary CLT and plot it.
spn_moments.py Instantiate and compute moments statistics about the random variables.
sklearn_interface.py Learn and evaluate a SPN using the scikit-learn interface.
spn_custom_leaf.py Learn, evaluate and serialize a SPN with a user-defined leaf distribution.
clt_to_spn.py Learn a Binary CLT, convert it to a structured decomposable SPN and plot it.
spn_clt_em.py Instantiate a SPN with Binary CLTs, apply EM algorithm and sample some data.
clt_queries.py Learn a Binary CLT, plot it, run some queries and sample some data.
ratspn_mnist.py Train and evaluate a RAT-SPN on MNIST.
dgcspn_olivetti.py Train, evaluate and complete some images with DGC-SPN on Olivetti-Faces.
dgcspn_mnist.py Train and evaluate a DGC-SPN on MNIST.
nvp1d_moons.py Train and evaluate a 1D RealNVP on Moons dataset.
maf_cifar10.py Train and evaluate a MAF on CIFAR10.
nvp2d_mnist.py Train and evaluate a 2D RealNVP on MNIST.
nvp2d_cifar10.py Train and evaluate a 2D RealNVP on CIFAR10.
spn_latent_mnist.py Train and evaluate a SPN on MNIST using the features extracted by an autoencoder.

Related Repositories

References

1. Peharz et al. On Theoretical Properties of Sum-Product Networks. AISTATS (2015).

2. Poon and Domingos. Sum-Product Networks: A New Deep Architecture. UAI (2011).

3. Molina, Vergari et al. Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains. AAAI (2018).

4. Molina, Vergari et al. SPFLOW : An easy and extensible library for deep probabilistic learning using Sum-Product Networks. CoRR (2019).

5. Peharz et al. Probabilistic Deep Learning using Random Sum-Product Networks. UAI (2020).

6. Papamakarios et al. Masked Autoregressive Flow for Density Estimation. NeurIPS (2017).

7. Dinh et al. Density Estimation using RealNVP. ICLR (2017).

8. Dinh et al. NICE: Non-linear Independent Components Estimation. ICLR (2015).

9. Papamakarios, Nalisnick et al. Normalizing Flows for Probabilistic Modeling and Inference. JMLR (2021).

10. Van de Wolfshaar and Pronobis. Deep Generalized Convolutional Sum-Product Networks for Probabilistic Image Representations. PGM (2020).

11. Rahman et al. Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees. ECML-PKDD (2014).

12. Di Mauro, Gala et al. Random Probabilistic Circuits. UAI (2021).

13. Desana and Schnörr. Learning Arbitrary Sum-Product Network Leaves with Expectation-Maximization. CoRR (2016).

14. Peharz et al. Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits. ICML (2020).

Owner
DeeProb-org
DeeProb-org
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022