BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

Overview

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

Installing The Dependencies

$ conda create --name beametrics python>=3.8
$ conda activate beametrics

WARNING: You need to install, before any package, correct version of pytorch linked to your cuda version.

(beametrics) $ conda install pytorch cudatoolkit=10.1 -c pytorch

Install BEAMetrics:

(beametrics) $ cd BEAMetrics
(beametrics) $ pip install -e .

Install Nubia metric (not on PyPI, 16/08/2021):

(beametrics) git clone https://github.com/wl-research/nubia.git
(beametrics) pip install -r requirements.txt

Alternatively, you can remove nubia from _DEFAULT_METRIC_NAMES in metrics.metric_reporter.

Reproducing the results

First you need to get the processed files, which include the metric scores. You can do that either by simply downloading the processed data (see Section Download Data), or by re-computing the scores (see Section Compute Correlations).

Then, the first bloc in the notebook visualize.ipynb allows to get all the tables from the paper (and also to generate the latex code in data/correlation).

Download the data

All the dataset can be downloaded from this zip file. It needs to be unzipped into the path data before running the correlations.

unzip data.zip

The data folder contains:

  • a subfolder raw containing all the original dataset
  • a subfolder processed containing all the dataset processed in a unified format
  • a subfolder correlation containing all the final correlation results, and the main tables of the paper
  • a subfolder datacards containing all the data cards

Computing the correlations

Processing the files to a clean json with the metrics computed:

python beametrics/run_all.py

The optional argument --dataset allows to compute only on a specific dataset, e.g.:

python run_all.py --dataset SummarizationCNNDM.

The list of the datasets and their corresponding configuration can be found in configs/__init__.

When finished, you can print the final table as in the paper, see the notebook visualize.ipynb.

Data Cards:

For each dataset, a data card is available in the datacard folder. The cards are automatically generated when running run_all.py, by filling the template with the dataset configuration as detailed bellow, in Adding a new dataset.

Adding a new dataset:

In configs/, you need to create a new .py file that inherites from ConfigBase (in configs/co'nfig_base.py). You are expected to fill the mandatory fields that allow to run the code and fill the data card template:

  • file_name: the file name located in data/raw
  • file_name_processed: the file name once processed and formated
  • metric_names: you can pass _DEFAULT_METRIC_NAMES by default or customize it, e.g. metric_names = metric_names + ('sari',) where sari corresponds to a valid metric (see the next section)
  • name_dataset: the name of the dataset as it was published
  • short_name_dataset: few letters that will be used to name the dataset in the final table report
  • languages: the languages of the dataset (e.g. [en] or [en, fr])
  • task: e.g. 'simplification', 'data2text
  • number_examples: the total number of evaluated texts
  • nb_refs: the number of references available in the dataset
  • dimensions_definitions: the evaluated dimensions and their corresponding definition e.g. {'fluency: 'How fluent is the text?'}
  • scale: the scale used during the evaluation, as defined in the protocol
  • source_eval_sets: the dataset from which the source were collected to generate the evaluated examples
  • annotators: some information about who were the annotators
  • sampled_from: the URL where was released the evaluation dataset
  • citation: the citation of the paper where the dataset was released

Your class needs its custom method format_file. The function takes as input the dataset's file_name and return a dictionary d_data. The format for d_data has to be the same for all the datasets:

d_data = {
    key_1: {
        'source': "a_source", 
        'hypothesis': "an_hypothesis",
        'references': ["ref_1", "ref_2", ...],
        'dim_1': float(a_score),
        'dim_2': float(an_other_score),
    },
    ...
    key_n: {
        ...
    }
}

where 'key_1' and 'key_n' are the keys for the first and nth example, dim_1 and dim_2 dimensions corresponding to self.dimensions.

Finally, you need to add your dataset to the dictionary D_ALL_DATASETS located in config/__init__.

Adding a new metric:

First, create a class inheriting from metrics/metrics/MetricBase. Then, simply add it to the dictionary _D_METRICS in metrics/__init__.

For the metric to be computed by default, its name has to be added to either

  • _DEFAULT_METRIC_NAMES: metrics computed on each dataset
  • _DEFAULT_METRIC_NAMES_SRC: metrics computed on dataset that have a text format for their source (are excluded for now image captioning and data2text). These two tuples are located in metrics/metric_reported.

Alternatively, you can add the metric to a specific configuration by adding it to the attribute metric_names in the config.

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022