PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

Overview

IIM - Crowd Localization


This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is developed based on C3F. framework

Progress

  • Testing Code (2020.12.10)
  • Training Code
    • NWPU (2020.12.14)
    • JHU (2021.01.05)
    • UCF-QNRF (2020.12.30)
    • ShanghaiTech Part A/B (2020.12.29)
    • FDST (2020.12.30)
  • scale information for UCF-QNRF and ShanghaiTech Part A/B (2021.01.07)

Getting Started

Preparation

  • Prerequisites

    • Python 3.7
    • Pytorch 1.6: http://pytorch.org .
    • other libs in requirements.txt, run pip install -r requirements.txt.
  • Code

  • Datasets

    • Download NWPU-Crowd dataset from this link.

    • Unzip *zip files in turns and place images_part* into the same folder (Root/ProcessedData/NWPU/images).

    • Download the processing labels and val gt file from this link. Place them into Root/ProcessedData/NWPU/masks and Root/ProcessedData/NWPU, respectively.

    • If you want to reproduce the results on Shanghai Tech Part A/B , UCF-QNRF, and JHU datasets, you can follow the instructions in DATA.md to setup the datasets.

    • Finally, the folder tree is below:

   -- ProcessedData
   	|-- NWPU
   		|-- images
   		|   |-- 0001.jpg
   		|   |-- 0002.jpg
   		|   |-- ...
   		|   |-- 5109.jpg
   		|-- masks
   		|   |-- 0001.png
   		|   |-- 0002.png
   		|   |-- ...
   		|   |-- 3609.png
   		|-- train.txt
   		|-- val.txt
   		|-- test.txt
   		|-- val_gt_loc.txt
   -- PretrainedModels
     |-- hrnetv2_w48_imagenet_pretrained.pth
   -- IIM
     |-- datasets
     |-- misc
     |-- ...

Training

  • run python train.py.
  • run tensorboard --logdir=exp --port=6006.
  • The validtion records are shown as follows: val_curve
  • The sub images are the input image, GT, prediction map,localization result, and pixel-level threshold, respectively: val_curve

Tips: The training process takes ~50 hours on NWPU datasets with two TITAN RTX (48GB Memeory).

Testing and Submitting

  • Modify some key parameters in test.py:
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_test.txt) will be generated, which can be directly submitted to CrowdBenchmark

Visualization on the val set

  • Modify some key parameters in test.py:
    • test_list = 'val.txt'
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_val.txt) will be generated.
  • Modify some key parameters in vis4val.py:
    • pred_file.
  • Run python vis4val.py.

Performance

The results (F1, Pre., Rec. under the sigma_l) and pre-trained models on NWPU val set, UCF-QNRF, SHT A, SHT B, and FDST:

Method NWPU val UCF-QNRF SHT A
Paper: VGG+FPN [2,3] 77.0/80.2/74.1 68.8/78.2/61.5 72.5/72.6/72.5
This Repo's Reproduction: VGG+FPN [2,3] 77.1/82.5/72.3 67.8/75.7/61.5 71.6/75.9/67.8
Paper: HRNet [1] 80.2/84.1/76.6 72.0/79.3/65.9 73.9/79.8/68.7
This Repo's Reproduction: HRNet [1] 79.8/83.4/76.5 72.0/78.7/66.4 76.1/79.1/73.3
Method SHT B FDST JHU
Paper: VGG+FPN [2,3] 80.2/84.9/76.0 93.1/92.7/93.5 -
This Repo's Reproduction: VGG+FPN [2,3] 81.7/88.5/75.9 93.9/94.7/93.1 61.8/73.2/53.5
Paper: HRNet [1] 86.2/90.7/82.1 95.5/95.3/95.8 62.5/74.0/54.2
This Repo's Reproduction: HRNet [1] 86.0/91.5/81.0 95.7/96.9 /94.4 64.0/73.3/56.8

References

  1. Deep High-Resolution Representation Learning for Visual Recognition, T-PAMI, 2019.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

About the leaderboard on the test set, please visit Crowd benchmark. Our submissions are the IIM(HRNet) and IIM (VGG16).

Video Demo

We test the pretrained HR Net model on the NWPU dataset in a real-world subway scene. Please visit bilibili or YouTube to watch the video demonstration. val_curve

Citation

If you find this project is useful for your research, please cite:

@article{gao2020learning,
  title={Learning Independent Instance Maps for Crowd Localization},
  author={Gao, Junyu and Han, Tao and Yuan, Yuan and Wang, Qi},
  journal={arXiv preprint arXiv:2012.04164},
  year={2020}
}

Our code borrows a lot from the C^3 Framework, and you may cite:

@article{gao2019c,
  title={C$^3$ Framework: An Open-source PyTorch Code for Crowd Counting},
  author={Gao, Junyu and Lin, Wei and Zhao, Bin and Wang, Dong and Gao, Chenyu and Wen, Jun},
  journal={arXiv preprint arXiv:1907.02724},
  year={2019}
}

If you use pre-trained models in this repo (HR Net, VGG, and FPN), please cite them.

Owner
tao han
tao han
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021