An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

Overview

CNN-Filter-DB

An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
Paul Gavrikov, Janis Keuper

Distribution shifts of trained 3x3 convolution filters

Paper: https://openreview.net/forum?id=2st0AzxC3mh

Abstract: We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain.

Versions

Number Changes
v1.0 Initial dataset as presented in the NeurIPS 2021 DistShift Workshop

Environment

We have executed this with Python 3.8.8 on Linux 3.10.0-1160.24.1.el7.x86_64. The scripts should however work with most python3 versions and OS.

To install all necessary modules please run:

pip install -r requirements.txt

or install these modules manually with your desired package manager:

numpy==1.21.2
scipy
scikit-learn==0.24.1
matplotlib==3.4.1
pandas==1.1.4
fast-histogram==0.10
KDEpy==1.1.0
tqdm==4.53.0
colorcet==2.0.6
h5py==3.1.0
tables==3.6.1

Prepare

Download dataset.h5 from https://kaggle.com/paulgavrikov/cnn-filter-db. This file contains the filters and meta information as individual datasets.

The filters are linked as a Nx9 numpy.float32 array under the /filter dataset. Every row is one filter and the row number is also the filter ID (i.e. the first row is filter ID 0). To reshape a filter f back to its original shape use f.reshape(3, 3).

The meta information is stored as a pandas.DataFrame under /meta. Following is an out of order list of column keys with a short description. Other column keys can and should be ignored. The table has a Multiindex on [model_id, conv_depth, conv_depth].

Column Description
model_id Unique int ID of the model.
conv_depth Convolution depth of the extracted filter i.e. how many convolution layers were hierarchically below the layer this filter was extracted from.
conv_depth_norm Similar to conv_depth but normalized by the maximum conv_depth. Will be a flaot betwenn 0 (first layers) .. 1 (towards head).
filter_ids List of Filter IDs that belong to this record. These can directly be mapped to the rows of the filter array.
model Unique string ID of the model. Typically, but not reliably in the format {name}{trainingset}{onnx opset}.
producer Producer of the ONNX export. Typically various versions of PyTorch.
op_set Version of the ONNX operator set used for export.
depth Total hierarchical depth of the model including all layers.
Name Name of the model. Not necessarily unique.
Paper Link to the Paper. Not always populated.
Pretraining-Dataset Name of the pretraining dataset(s) if pretrained. Multiple datr sets are seperated by commas.
Training-Dataset Name of the training dataset(s). Multiple datr sets are seperated by commas.
Datatype Visual, manual categorization of the training datatsets.
Task Task of the model.
Accessible Represents where the model can be found. Typically this is a link to GitHub.
Dataset URL URL of the training dataset. Usually only entered for exotic datasets.
total_filters Total number of convolution filters in this model.
3x3_filter_share The share of 3x3 filters compared to all other conv filters.
(X, Y) filters Represents how often filters of shape (X, Y) were found in the source model.
Conv, Add, Relu, MaxPool, Reshape, MatMul, Transpose, BatchNormalization, Concat, Shape, Gather, Softmax, Slice, Unsqueeze, Mul, Exp, Sub, Div, Pad, InstanceNormalization, Upsample, Cast, Floor, Clip, ReduceMean, LeakyRelu, ConvTranspose, Tanh, GlobalAveragePool, Gemm, ConstantOfShape, Flatten, Squeeze, Less, Loop, Split, Min, Tile, Sigmoid, NonMaxSuppression, TopK, ReduceMin, AveragePool, Dropout, Where, Equal, Expand, Pow, Sqrt, Erf, Neg, Resize, LRN, LogSoftmax, Identity, Ceil, Round, Elu, Log, Range, GatherElements, ScatterND, RandomNormalLike, PRelu, Sum, ReduceSum, NonZero, Not Represents how often this ONNX operator was found in the original model. Please note that individual operators may have been fused in later ONNX opsets.

Run

Adjust dataset_path in https://github.com/paulgavrikov/CNN-Filter-DB/blob/main/main.ipynb and run the cells.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{
gavrikov2021an,
title={An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters},
author={Gavrikov, Paul and Keuper, Janis},
booktitle={NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications},
year={2021},
url={https://openreview.net/forum?id=2st0AzxC3mh}
}
Owner
Paul Gavrikov
Paul Gavrikov
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022