Label Studio is a multi-type data labeling and annotation tool with standardized output format

Overview

GitHub label-studio:build GitHub release

WebsiteDocsTwitterJoin Slack Community

What is Label Studio?

Label Studio is an open source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models.

Gif of Label Studio annotating different types of data

Have a custom dataset? You can customize Label Studio to fit your needs. Read an introductory blog post to learn more.

Try out Label Studio

Install Label Studio locally, or deploy it in a cloud instance. Also you can try Label Studio Teams.

Install locally with Docker

Official Label Studio docker image is here and it can be downloaded with docker pull. Run Label Studio in a Docker container and access it at http://localhost:8080.

docker pull heartexlabs/label-studio:latest
docker run -it -p 8080:8080 -v `pwd`/mydata:/label-studio/data heartexlabs/label-studio:latest

You can find all the generated assets, including SQLite3 database storage label_studio.sqlite3 and uploaded files, in the ./mydata directory.

Override default Docker install

You can override the default launch command by appending the new arguments:

docker run -it -p 8080:8080 -v `pwd`/mydata:/label-studio/data heartexlabs/label-studio:latest label-studio --log-level DEBUG

Build a local image with Docker

If you want to build a local image, run:

docker build -t heartexlabs/label-studio:latest .

Run with Docker Compose

Docker compose script provides production-ready stack consisting of the following components:

  • Label Studio
  • Nginx - proxy web server used to load various static data, including uploaded audio, images, etc.
  • PostgreSQL - production-ready database that replaces less performant SQLite3.

To start using the app from http://localhost run this command:

docker-compose up

Install locally with pip

# Requires >=Python3.6, <3.9
pip install label-studio

# Start the server at http://localhost:8080
label-studio

Install locally with Anaconda

conda create --name label-studio python=3.8
conda activate label-studio
pip install label-studio

Install for local development

You can run the latest Label Studio version locally without installing the package with pip.

# Install all package dependencies
pip install -e .
# Run database migrations
python label_studio/manage.py migrate
# Start the server in development mode at http://localhost:8080
python label_studio/manage.py runserver

Deploy in a cloud instance

You can deploy Label Studio with one click in Heroku, Microsoft Azure, or Google Cloud Platform:

Apply frontend changes

The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. In case you've made some changes there, the following commands should be run before building / starting the instance:

cd label_studio/frontend/
npm ci
npx webpack
cd ../..
python label_studio/manage.py collectstatic --no-input

Troubleshoot installation

If you see any errors during installation, try to rerun the installation

pip install --ignore-installed label-studio

Install dependencies on Windows

To run Label Studio on Windows, download and install the following wheel packages from Gohlke builds to ensure you're using the correct version of Python:

# Upgrade pip 
pip install -U pip

# If you're running Win64 with Python 3.8, install the packages downloaded from Gohlke:
pip install lxml‑4.5.0‑cp38‑cp38‑win_amd64.whl

# Install label studio
pip install label-studio

What you get from Label Studio

Screenshot of Label Studio data manager grid view with images

  • Multi-user labeling sign up and login, when you create an annotation it's tied to your account.
  • Multiple projects to work on all your datasets in one instance.
  • Streamlined design helps you focus on your task, not how to use the software.
  • Configurable label formats let you customize the visual interface to meet your specific labeling needs.
  • Support for multiple data types including images, audio, text, HTML, time-series, and video.
  • Import from files or from cloud storage in Amazon AWS S3, Google Cloud Storage, or JSON, CSV, TSV, RAR, and ZIP archives.
  • Integration with machine learning models so that you can visualize and compare predictions from different models and perform pre-labeling.
  • Embed it in your data pipeline REST API makes it easy to make it a part of your pipeline

Included templates for labeling data in Label Studio

Label Studio includes a variety of templates to help you label your data, or you can create your own using specifically designed configuration language. The most common templates and use cases for labeling include the following cases:

Set up machine learning models with Label Studio

Connect your favorite machine learning model using the Label Studio Machine Learning SDK. Follow these steps:

  1. Start your own machine learning backend server. See more detailed instructions.
  2. Connect Label Studio to the server on the model page found in project settings.

This lets you:

  • Pre-label your data using model predictions.
  • Do online learning and retrain your model while new annotations are being created.
  • Do active learning by labeling only the most complex examples in your data.

Integrate Label Studio with your existing tools

You can use Label Studio as an independent part of your machine learning workflow or integrate the frontend or backend into your existing tools.

Ecosystem

Project Description
label-studio Server, distributed as a pip package
label-studio-frontend React and JavaScript frontend and can run standalone in a web browser or be embedded into your application.
data-manager React and JavaScript frontend for managing data. Includes the Label Studio Frontend. Relies on the label-studio server or a custom backend with the expected API methods.
label-studio-converter Encode labels in the format of your favorite machine learning library
label-studio-transformers Transformers library connected and configured for use with Label Studio

Roadmap

Want to use The Coolest Feature X but Label Studio doesn't support it? Check out our public roadmap!

Citation

@misc{Label Studio,
  title={{Label Studio}: Data labeling software},
  url={https://github.com/heartexlabs/label-studio},
  note={Open source software available from https://github.com/heartexlabs/label-studio},
  author={
    Maxim Tkachenko and
    Mikhail Malyuk and
    Nikita Shevchenko and
    Andrey Holmanyuk and
    Nikolai Liubimov},
  year={2020-2021},
}

License

This software is licensed under the Apache 2.0 LICENSE © Heartex. 2020-2021

Owner
Heartex
Data labeling and exploration tools for Machine Learning
Heartex
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Pytorch Implementation for CVPR2018 Paper: Learning to Compare: Relation Network for Few-Shot Learning

LearningToCompare Pytorch Implementation for Paper: Learning to Compare: Relation Network for Few-Shot Learning Howto download mini-imagenet and make

Jackie Loong 246 Dec 19, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022