TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Overview

Tensorflow- MaskRCNN Steps

git clone https://github.com/amalaj7/TFOD-MASKRCNN.git
1.  conda create -n tfod python=3.6   
2.  conda activate tfod  
3.  pip install pillow lxml Cython contextlib2 jupyter matplotlib pandas opencv-python tensorflow==1.15.0 (for GPU- tensorflow-gpu)
4.  conda install -c anaconda protobuf   
5.  go to project path 'models/research'
6.  protoc object_detection/protos/*.proto --python_out=.  
7.  python setup.py install

Install COCO API

8) pip3 install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"

Resize images in a folder

9) python resize_images.py -d train_images/ -s 800 600

Put images and annotations in corresponding folders inside images/ (Annotations are in COCO format)

10)  python create_coco_tf_record.py --logtostderr --train_image_dir=images/train_images --test_image_dir=images/test_images --train_annotations_file=coco_annotations/train.json --test_annotations_file=coco_annotations/test.json --include_masks=True --output_dir=./
  • copy nets and deployment folder and export_inference_graph.py from slim folder and paste it in research folder

Training

  • Create a folder called "training" , inside training folder download your custom model from Model Zoo TF1 | Model Zoo TF2 , extract it and create a labelmap.pbtxt file(sample file is given in training folder) that contains the class labels
  • Alterations in the config file , copy the config file from object_detection/samples/config and paste it in training folder or else u can use the pipeline.config that comes while downloading the pretrained model
  • Edit line no 10 - Number of classes
  • Edit line no 128 - Path to model.ckpt file (downloaded model's file)
  • Edit line no 134 - Iteration
  • Edit line no 143 - path-to-train.record
  • Edit line no 145 and 161 - path-to-labelmap
  • Edit line no 159 - path to test.record

Train model

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/mask_rcnn_resnet50_atrous_coco.config

Export Tensorflow Graph

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/mask_rcnn_resnet50_atrous_coco.config --trained_checkpoint_prefix training/model.ckpt-10000 --output_directory my_model_mask

Inference

  • Open object_detection_tutorial.ipynb and replace the necessary fields like model path, config path and test image path

Result

Segmented Result

View tensorboard

tensorboard --logdir=training

Tensorflow2 - MASKRCNN Steps

  • Almost similar steps as above .
git clone https://github.com/tensorflow/models.git
cd models/research
# Compile protos.
protoc object_detection/protos/*.proto --python_out=.
# Install TensorFlow Object Detection API.
cp object_detection/packages/tf2/setup.py .
python -m pip install .

To test the installation

python object_detection/builders/model_builder_tf2_test.py
  • Then follow the above steps from 8 to 10 (includes downloading the pretrained model and editing the config file according to your needs)

Train the model

python model_main_tf2.py --pipeline_config_path=training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config --model_dir=training --alsologtostderr

View tensorboard

tensorboard --logdir=training

Export Tensorflow Graph

python exporter_main_v2.py \
    --trained_checkpoint_dir training/model_checkpoint \
    --output_directory final_model \
    --pipeline_config_path training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config

Inference

  • For TFOD2 , you can utilize inference_from_saved_model_tf2_colab.ipynb and replace the necessary fields like model path, config path and test image path
Owner
Amal Ajay
Goals Matter, But so is the Journey and the Climb.
Amal Ajay
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022