Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Overview

Blockchain-enabled Server-less Federated Learning

Repository containing the files used to reproduce the results of the publication "Blockchain-enabled Server-less Federated Learning".

''BibTeX'' citation:

@article{wilhelmi2021blockchain,
  title={Blockchain-enabled Server-less Federated Learning},
  author={Wilhelmi, Francesc, Giupponi, Lorenza and Dini, Paolo},
  journal={arXiv preprint arXiv:2112.07938
},
  year={2021}
}

Table of Contents

Authors

Abstract

Motivated by the heterogeneous nature of devices participating in large-scale Federated Learning (FL) optimization, we focus on an asynchronous server-less FL solution empowered by Blockchain (BC) technology. In contrast to mostly adopted FL approaches, which assume synchronous operation, we advocate an asynchronous method whereby model aggregation is done as clients submit their local updates. The asynchronous setting fits well with the federated optimization idea in practical large-scale settings with heterogeneous clients. Thus, it potentially leads to higher efficiency in terms of communication overhead and idle periods. To evaluate the learning completion delay of BC-enabled FL, we provide an analytical model based on batch service queue theory. Furthermore, we provide simulation results to assess the performance of both synchronous and asynchronous mechanisms. Important aspects involved in the BC-enabled FL optimization, such as the network size, link capacity, or user requirements, are put together and analyzed. As our results show, the synchronous setting leads to higher prediction accuracy than the asynchronous case. Nevertheless, asynchronous federated optimization provides much lower latency in many cases, thus becoming an appealing FL solution when dealing with large data sets, tough timing constraints (e.g., near-real-time applications), or highly varying training data.

Repository description

This repository contains the resources used to generate the results included in the paper entitled "Blockchain-enabled Server-less Federated Learning". The files included in this repository are:

  1. LaTeX files: contains the files used to generate the manuscript.
  2. Code & Results: scripts and code used to generate the results included in the paper.
  • Queue code: scripts used to execute the Blockchain queuing delay simulations through the batch-service queue simulator.
  • TensorFlow code: python scripts used to execute the FL mechanisms through TensorFlowFederated.
  • Matlab code: matlab scripts used to process the results and plot the figures included in the manuscript.
  • Outputs: files containing the outputs from the different resources (queue simulator, TFF).
  • Figures: figures included in the manuscript and others with preliminary results.

Usage

Part 1: Batch service queue analysis

To generate the results related to the analysis of the queueing delay in the Blockchain, we used our batch-service queue simulator (commit: f846b66). Please, refer to that repository's documentation for installation/execution guidelines. As for the corresponding theoretical background, more details can be found in [1].

The obtained results from this part can be found at "Matlab code/output_queue_simulator". To reproduce them, execute the scripts from the "Batch service queue" folder in the batch-service queue simulator.

Part 2: FLchain analysis

Tensorflow Federated (TFF) has been used to evaluate the proposed s-FLchain and a-FLchain mechanisms in the manuscript. To get started with TF (and TFF), we strongly recommend using the tutorials in https://www.tensorflow.org/federated/tutorials/tutorials_overview.

Once the TFF environment has been setup, our results can be reproduced by using the scripts in "TensorFlow code":

  1. centalized_baseline.py: centralized ML model for getting baseline results (upper/lower bounds).
  2. sFLchain_vs_aFLchain.py: script generating the output for the comparison of the synchronous and the asynchronous models.

The output results from this part can be found at "Matlab code/output_tensorflow".

Part 3: End-to-end analysis framework

Finally, to gather all the resources together, we have used the end-to-end latency framework contained in this repository ("Matlab code/simulation_scripts"). Those files contain the communication and computation models used to calculate the total latency experienced by each considered Blockchain-enabled FL mechanism. Moreover, to get the end-to-end latency and accuracy results, the abovementioned scripts gather and process the outputs obtained from both batch-service queue simulator and TFF.

Content:

  1. 0_preliminary_results: evaluation of several FL parameters via TFF (out of the scope of this publication).
  2. 1_blockchain_analysis: evaluation of the Blockchain queuing delay (refer to Part 1: Batch service queue analysis).
  3. 2_flchain: evaluation of the FL accuracy (refer to Part 2: FLchain analysis) and end-to-end latency analysis. Includes models to compute communication and computation-related delays.

Performance Evaluation

Simulation parameters

The simulation parameters used in the publication are as follows:

Parameter Value
Number of miners 19
Transaction size 5 kbits
BC Block header size 20 kbits
Max. waiting time 1000 seconds
Queue length 1000 packets
--------- --------------------------------------- ----------------------
Min/max distance Client-BS 0/4.15 meters
Bandwidth. 180 kHz
Min/max distance Client-BS 2 GHz
Min/max distance Client-BS 0 dBi
Comm. Loss at the reference distance (P_L0) 5 dB
Path-loss exponent (α) 4.4
Shadowing factor (σ) 9.5
Obstacles factor (γ) 30
Ground noise -95 dBm
Capacity P2P links 5 Mbps
--------- --------------------------------------- ----------------------
Learning algorithm Neural Network
Number of hidden layers 2
Activation function ReLU
Optimizer SGD
Loss function Cat. cross-entropy
ML Learning rate (local/global) 0.01/1
Epochs number 5
Batch size 20
CPU cycles to process a data point 10^-5
Clients' clock speed 1 GHz

Simulation Results

In what follows, we present the results presented in the manuscript. First, we refer to the Blockchain queuing delay analysis, where we assess the sensitivity of the Blockchain on various parameters, including the block size, the mining rate, the traffic intensity, or the miners' communication capacity.

Next, we provide a broader vision of the Blockchain transaction confirmation latency by including other delays different than the queuing delay, such as transaction upload, block generation, or block propagation.

Finally, we present the results obtained for the evaluation of s-FLchain and a-FLchain in terms of learning accuracy and learning completion time:

References

[1] Wilhelmi, F., & Giupponi, L. (2021). Discrete-Time Analysis of Wireless Blockchain Networks. arXiv preprint arXiv:2104.05586.

Contribute

If you want to contribute, please contact to [email protected].

Owner
Francesc Wilhelmi
PhD Student at the Wireless Networking Research Group (Universitat Pompeu Fabra)
Francesc Wilhelmi
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022