FewBit — a library for memory efficient training of large neural networks

Overview

FewBit

FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to backward pass and memory footprint reduction for saved tensors between forward and backward passes. Namely, the library provides its own implementation of common activation functions and linear layer since they contribute the most to memory usage in training time. Optimized linear layer saves up to 15-20% memory and optimized activation functions save up to 15-30% of memory usage with negligible loss in performance (see [1][2] for details).

In the table below, one can see comparison of different optimizations applied to RoBERTa model. Compression rate of randomized linear layer is 20% (it uses only 20% of input) and GELU approximation uses only 3 bits.

Task Batch Size GELU Linear Layer Peak Memory, GiB Saving, %
1 MRPC 128 Vanilla Vanilla 11.30 0.0
2 MRPC 128 3-bit Vanilla 9.75 13.8
3 MRPC 128 Vanilla Randomized 9.20 18.6
4 MRPC 128 3-bit Randomized 7.60 32.7

Usage

The library fewbit implements basic activation functions with backward pass optimizations for reducing memory footprint during model training. All activation functions exported by the library can be used as a drop-in replacement for most of standard activation functions implemented in PyTorch. The common pattern is to replace torch.nn with fewbit package qualifier.

import fewbit
import torch as T

model = T.nn.Sequential(
    ...,
    fewbit.GELU(bits=3),  # Use 3-bits GELU approximation.
    ...,
)

In the case of pre-trained models, one can rebuild model with map_module routine which walks through model tree recursively and allows to replace some modules or activation functions. So, user should only use suitable constructor for a new module. As an example the code below replaces all default linear layers with randomized ones.

from fewbit import RandomizedLinear
from fewbit.util import convert_linear, map_module

converter = lambda x: convert_linear(x, RandomizedLinear, proj_dim_ratio=0.1)
new_model = map_module(old_model, converter)  # In-place model construction.

Quantized Gradients of Activation Functions

Installation

The simplest and preferred installation way is installation from PyPI.

pip install -U fewbit

FewBit is written in Python, but it implements some opertions in C++/CUDA to archive better performance. So, building from source requires CUDA Toolkit and CMake as a build system. The latest release can be installed with the following command.

pip install -U https://github.com/SkoltechAI/fewbit.git

List of Activation Functions

The library supports the following activation functions.

Piece-wise Activation Functions

In this section, all activation functions has 1-bit derivative. The only difference is band. The band requires two comparison to determine gradient domain. The complete list of activation functions is leaky_relu, relu, threshold, hardsigmoid, hardtanh, relu6, hardshrink, and softshrink.

Continous Activation Functions

All continous activation function could be divided into three classes according to its parity property: odd, even, and neither even nor odd. The parity property allows to use a small optimization to increase precision of approximation. The complete list of reimplemented activation functions in this category is celu, elu, hardswish, logsigmoid, mish, selu, sigmoid, silu, softplus, softsign, tanh, and tanhshrink.

List of Modules

Module RandomizedLinear is a replacement for default Linear module. It is used power of approximate matrix multiplication for memory saving.

Assembly

Preliminary step depends on one's PyTorch distribution and availiable tooling. Building of native components requires CMake and a build system like Make or Ninja. Next, if PyTorch is installed system-wide the the following step is not neccessary. Otherwise, one likely should add search path for CMake modules to environment variables as follows.

export CMAKE_PREFIX_PATH="$(python -c 'import torch.utils; print(torch.utils.cmake_prefix_path)')"

The next step is useful in development environment. It just builds PyTorch operator library in source tree (option --inplace) with forced CUDA support (option --cuda). By default no CUDA support are forced.

python setup.py build_ext --inplace --cuda

With options similar to the previous step, one can build wheel binary distribution of the package.

python setup.py bdist_wheel --inplace --cuda

Development Environment with Docker

In order to develop on different platforms we uses custom docker image for non-priviledge user based on Nvidia CUDA image. Image contains pre-built native extention and it is parametrized by user name and user ID in a host system. The latter is crucial thing in binding host volumes.

docker build -t fewbit --build-arg UID=$(id -u) .
docker run --rm -ti -e TERM=$TERM fewbit

Citation

Please cite the following papers if the library is used in an academic paper (export BibTeX).

@misc{bershatsky2022memoryefficient,
    title={{M}emory-{E}fficient {B}ackpropagation through {L}arge {L}inear {L}ayers},
    author={Daniel Bershatsky and Aleksandr Mikhalev and Alexandr Katrutsa and Julia Gusak and Daniil Merkulov and Ivan Oseledets},
    year={2022},
    eprint={2201.13195},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

@misc{novikov2022fewbit,
    title={{F}ew-{B}it {B}ackward: {Q}uantized {G}radients of {A}ctivation {F}unctions for {M}emory {F}ootprint {R}eduction},
    author={Georgii Novikov and Daniel Bershatsky and Julia Gusak and Alex Shonenkov and Denis Dimitrov and Ivan Oseledets},
    year={2022},
    eprint={2202.00441},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

License

© The FewBit authors, 2022 — now. Licensed under the BSD 3-Clause License. See AUTHORS and LICENSE file for more details1.

Footnotes

  1. The work was supported by Sber AI and the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022