source code the paper Fast and Robust Iterative Closet Point.

Overview

Fast-Robust-ICP

This repository includes the source code the paper Fast and Robust Iterative Closet Point.

Authors: Juyong Zhang, Yuxin Yao, Bailin Deng.

This code is protected under patent. It can be only used for research purposes. If you are interested in business purposes/for-profit use, please contact Juyong Zhang (the author, email: [email protected]).

This code was written by Yuxin Yao. If you have questions, please contact [email protected].

Compilation

The code is compiled using CMake and requires Eigen. It has been tested on Ubuntu 16.04 with gcc 5.4.0 and on Windows with Visual Studio 2015.

Follow the following steps to compile the code:

  1. Make sure Eigen is installed. We recommend version 3.3+.

    • Download Eigen from eigen.tuxfamily.org and extract it into a folder 'eigen' within the 'include' folder. Make sure the files 'include/eigen/Eigen/Dense' and 'include/eigen/unsupported/Eigen/MatrixFunctions' can be found
    • Alternatively: On Ubuntu, use the command "apt-get install libeigen3-dev" to install Eigen.
  2. Create a build folder 'build' within the root directory of the code

  3. Run cmake to generate the build files inside the build folder, and compile the source code:

    • On linux, run the following commands within the build folder:
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    $ make
    
    • On windows, use the cmake GUI to generate a visual studio solution file, and build the solution.
  4. Afterwards, there should be an exectuable file 'FRICP' generated.

Usage

The program is run with four input parameters:

  1. an input file storing the source point cloud;
  2. an input file storing the target point cloud;
  3. an output path storing the registered source point cloud and transformation;
  4. registration method:
0: ICP
1: AA-ICP
2: Ours (Fast ICP)
3: Ours (Robust ICP)
4: ICP Point-to-plane
5: Our (Robust ICP point-to-plane)
6: Sparse ICP
7: Sparse ICP point-to-plane

You can ignore the last parameter, in which case Ours (Robust ICP) will be used by default.

Example:

$ ./FRICP ./data/target.ply ./data/source.ply ./data/res/ 3

But obj and ply (Non-binary encoding) files are supported.

Initialization support

If you have an initial transformation that can be applied on the input source model to roughly align with the input target model, you can set use_init=true and set file_init to the initial file name in main.cpp . The format of the initial transformation is a 4x4 matrix([R, t; 0, 1]), where R is a 3x3 rotation matrix and t is a 3x1 translation vector. These numbers are stored in 4 rows, and separated by spaces in each row. This format is the same as the output transformation of this code. It is worth mentioning that this code will align the center of gravity of the initial source and target models by default before starting the registration process, but this operation will be no longer used when the initial transformation is provided. In our experiment, we directly use the output file of transformation matrix generated by Super4PCS as the initial file.

Citation

Please cite the following papers if it helps your research:

@article{zhang2021fast,
  author={Juyong Zhang and Yuxin Yao and Bailin Deng},
  title={Fast and Robust Iterative Closest Point}, 
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  year={2021},
  volume={},
  number={},
  pages={1-1}}

Acknowledgements

The code is adapted from the Sparse ICP implementation released by the authors.

Owner
yaoyuxin
yaoyuxin
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022