MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

Overview

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

This repository contains links to data and code to fetch and reproduce the data described in our EMNLP 2021 paper titled "MassiveSumm: a very large-scale, very multilingual, news summarisation dataset". A (massive) multilingual dataset consisting of 92 diverse languages, across 35 writing scripts. With this work we attempt to take the first steps towards providing a diverse data foundation for in summarisation in many languages.

Disclaimer: The data is noisy and recall-oriented. In fact, we highly recommend reading our analysis on the efficacy of this type of methods for data collection.

Get the Data

Redistributing data from web is a tricky matter. We are working on providing efficient access to the entire dataset, as well as expanding it even further. For the time being we only provide links to reproduce subsets of the entire dataset through either common crawl and the wayback machine. The dataset is also available upon request ([email protected]).

In the table below is a listing of files containing URLs and metadata required to fetch data from common crawl.

lang wayback cc
afr link -
amh link link
ara link link
asm link -
aym link -
aze link link
bam link link
ben link link
bod link link
bos link link
bul link link
cat link -
ces link link
cym link link
dan link link
deu link link
ell link link
eng link link
epo link -
fas link link
fil link -
fra link link
ful link link
gle link link
guj link link
hat link link
hau link link
heb link -
hin link link
hrv link -
hun link link
hye link link
ibo link link
ind link link
isl link link
ita link link
jpn link link
kan link link
kat link link
khm link link
kin link -
kir link link
kor link link
kur link link
lao link link
lav link link
lin link link
lit link link
mal link link
mar link link
mkd link link
mlg link link
mon link link
mya link link
nde link link
nep link link
nld link -
ori link link
orm link link
pan link link
pol link link
por link link
prs link link
pus link link
ron link -
run link link
rus link link
sin link link
slk link link
slv link link
sna link link
som link link
spa link link
sqi link link
srp link link
swa link link
swe link -
tam link link
tel link link
tet link -
tgk link -
tha link link
tir link link
tur link link
ukr link link
urd link link
uzb link link
vie link link
xho link link
yor link link
yue link link
zho link link
bis - link
gla - link

Cite Us!

Please cite us if you use our data or methodology

@inproceedings{varab-schluter-2021-massivesumm,
    title = "{M}assive{S}umm: a very large-scale, very multilingual, news summarisation dataset",
    author = "Varab, Daniel  and
      Schluter, Natalie",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.797",
    pages = "10150--10161",
    abstract = "Current research in automatic summarisation is unapologetically anglo-centered{--}a persistent state-of-affairs, which also predates neural net approaches. High-quality automatic summarisation datasets are notoriously expensive to create, posing a challenge for any language. However, with digitalisation, archiving, and social media advertising of newswire articles, recent work has shown how, with careful methodology application, large-scale datasets can now be simply gathered instead of written. In this paper, we present a large-scale multilingual summarisation dataset containing articles in 92 languages, spread across 28.8 million articles, in more than 35 writing scripts. This is both the largest, most inclusive, existing automatic summarisation dataset, as well as one of the largest, most inclusive, ever published datasets for any NLP task. We present the first investigation on the efficacy of resource building from news platforms in the low-resource language setting. Finally, we provide some first insight on how low-resource language settings impact state-of-the-art automatic summarisation system performance.",
}
Owner
Daniel Varab
🐦: @danielvarab
Daniel Varab
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022