Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Related tags

Deep LearningBBI
Overview

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

This repository contains the code for the BBI optimizer, introduced in the paper Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization. 2201.11137. It is implemented using Pytorch.

The repository also includes the code needed to reproduce all the experiments presented in the paper. In particular:

  • The BBI optimizer is implemented in the file inflation.py.

  • The jupyter notebooks with the synthetic experiments are in the folder synthetic. All the notebooks already include the output, and text files with results are also included in the folder. In particular

    • The notebook ackley.ipynb can be used to reproduce the results in Sec. 4.1.
    • The notebook zakharov.ipynb can be used to reproduce the results in Sec. 4.2.
    • The notebook multi_basin.ipynb can be used to reproduce the results in Sec. 4.3.
  • The ML benchmarks described in Sec. 4.5 can be found in the folders CIFAR and MNIST. The notebooks already include some results that can be inspected, but not all the statistics that builds up the results in Table 2. In particular:

    • CIFAR : The notebook CIFAR-notebook.ipynb uses hyperopt to estimate the best hyperparameters for each optimizer and then runs a long run with the best estimated hyperparamers. The results can be analyzed with the notebook analysis-cifar.ipynb, which can also be used to generate more runs with the best hyperparameters to gather more statistics. The subfolder results already includes some runs that can be inspected.

    • MNIST: The notebooks mnist_scan_BBI.ipynb and mnist_scan_SGD.ipynb perform a grid scan using BBI and SGD, respectively and gather some small statistics. All the results are within the notebooks themselves.

  • The PDE experiments can be run by running the script script-PDE.sh as

    bash script-PDE.sh
    

    This will solve the PDE outlined in Sec. 4.4 and App. C multiple times with the same initialization. The hyperparameters are also kept fixed and can be obtained from the script itself. In particular:

    • feature 1 means that an L2 regularization is added to the loss.
    • seed specifies the seed, which fixes the initialization of the network. The difference between the different runs then is only due to the random bounces, which are not affected by this choice of the seed.

    The folder results already includes some runs. The runs performed in this way are not noisy, i.e. the set of points sampled from the domain is kept fixed. To randomly change the points every "epoch" (1000 iterations), edit the file experiments/PDE_PoissonD.py by changing line 134 to self.update_points = True.

The code has been tested with Python 3.9, Pytorch 1.10, hyperopt 0.2.5. We ran the synthetic experiments and MNIST on a six-core i7-9850H CPU with 16 GB of RAM, while we ran the CIFAR and PDE experiments on a pair of GPUs. We tested both on a pair of NVIDIA GeForce RTX 2080 Ti and on a pair of NVIDIA Tesla V100-SXM2-16GB GPUs, coupled with 32 GB of RAM and AMD EPYC 7502P CPUs.

The Resnet-18 code (in experiments/models) and the utils.py helper functions are adapted from https://github.com/kuangliu/pytorch-cifar (MIT License).

Owner
G. Bruno De Luca
G. Bruno De Luca
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022