A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Overview

Imagenette

🎶 Imagenette, gentille imagenette,

Imagenette, je te plumerai. 🎶

(Imagenette theme song thanks to Samuel Finlayson)


NB:

  • Versions of Imagenette and Imagewoof with noisy labels are now available as CSV files that come with the dataset.
  • The Imagenette and Imagewoof datasets have recently (Dec 6 2019) changed. They now have a 70/30 train/valid split.
  • The old versions (which have a much smaller validation set) are still available with the same URLs, but the URLs below point to the new versions.
  • We've also added the new Image网 dataset (see below for details). The leaderboards below been updated using the new datasets, using a strong. Can you beat it?...

The Datasets

Imagenette

Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).

'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent. If you've seen Peter Sellars in The Pink Panther, then think something like that. It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet". (Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet". Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.)

The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained.

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder. Leaderboards for 5% noise and 50% noise are maintained below.

Too easy for you? In that case, you might want to try Imagewoof.

Imagewoof

Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds. The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog. (No we will not enter in to any discussion in to whether a dingo is in fact a dog. Any suggestions to the contrary are un-Australian. Thank you for your cooperation.)

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder.

Imagewoof too easy for you too?!? Then get your hands on Image网.

Image网

Image网 is pronounced "Imagewang"; 网 means "net" in Chinese! Image网 contains Imagenette and Imagewoof combined, but with some twists that make it into a tricky semi-supervised unbalanced classification problem:

  • The validation set is the same as Imagewoof (i.e. 30% of Imagewoof images); there are no Imagenette images in the validation set (they're all in the training set)

  • Only 10% of Imagewoof images are in the training set!

  • The remaining are in the unsup ("unsupervised") directory, and you can not use their labels in training!

  • It's even hard to type and hard to say!

  • Full size download;

  • 320 px download;

  • 160 px download.

Why Imagenette?

I (Jeremy Howard, that is) mainly made Imagenette because I wanted a small vision dataset I could use to quickly see if my algorithm ideas might have a chance of working. They normally don't, but testing them on Imagenet takes a really long time for me to find that out, especially because I'm interested in algorithms that perform particularly well at the end of training.

But I think this can be a useful dataset for others as well.

Usage

If you are already using the fastai library, you can download and access these quickly with commands like:

path = untar_data(URLs.IMAGENETTE_160)

where path now stores the destination to ImageNette-160.

For researchers

  • Try to create a classifier that's as accurate as possible under various constraints (we'll keep leaderboards below, submit your PR with a link to your repo or gist!), such as:
    • Within a certain number of epochs: 5, 20, 40, 160
    • Within a certain budget on AWS or GCP (use spot or interruptible instances to save money): $0.05, $0.10, $0.25, $0.50, $1.00, $2.00
  • Experiment with other low resource problems like transfer learning from small datasets, using semi-supervised learning to help classify small datasets, etc
  • Test the impact of using different sized images, either separately, or together as part of training (i.e. progressive resizing)
  • Compare your algorithm on easy vs hard small datasets, which are otherwise very similar (Imagenette vs Imagewoof)
  • Ensure that you start from random weights - not from pretrained weights.

For students

  • Practice your modeling skills on a dataset that's very similar to Imagenet, but much less expensive to deal with
  • Do send me a PR with your other applications for this dataset!

Tips

  • Because there are only 10 categories, the usual "top 5 accuracy" isn't so interesting. So you should generally report top 1 accuracy when using Imagenette
  • The best approaches to 5 epoch training often don't scale well to more epochs
  • Data augmentation like mixup tends to only help for 80+ epochs

Leaderboard

Generally you'll see +/- 1% differences from run to run since it's quite a small validation set. So please only send in contributions that are higher than the reported accuracy >80% of the time. Here's the rules:

  • No inference time tricks, e.g. no: TTA, validation size > train size
  • Must start with random weights
  • Must be one of the size/#epoch combinations listed in the table
  • If you have the resources to do so, try to get an average of 5 runs, to get a stable comparison. Use the "# Runs" column to include this (note that train_imagenette.py provides a --runs flag to make this easy)
  • In the URL column include a link to a notebook, blog post, gist, or similar which explains what you did to get your result, and includes the code you used (or a link to it), including the exact commit, so that others can reproduce your result.

Imagenette Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 fastai2 train_imagenette.py 2020-10 + MaxBlurPool + tuned hyperparams 87.43% 5, mean
128 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 91.57% 5, mean
128 80 fastai2 train_imagenette.py 2020-01 93.55% 1
128 200 fastai2 train_imagenette.py 2020-01 94.24% 1
192 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.76% 5, mean
192 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 92.50% 5, mean
192 80 fastai2 train_imagenette.py 2020-01 94.50% 1
192 200 fastai2 train_imagenette.py 2020-01 95.03% 1
256 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.85% 5, mean
256 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 93.53% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 94.90% 1
256 200 fastai2 train_imagenette.py 2020-01 95.11% 1

Imagenette w/Label Noise = 5%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 83.44% 1
128 20 baseline 89.53% 1
128 80 baseline 89.30% 1
128 200 baseline 90.04% 1
192 5 baseline 84.13% 1
192 20 baseline 90.65% 1
192 80 baseline 91.01% 1
192 200 baseline 91.08% 1
256 5 SESEMI 88.87% ± 0.67 5,mean±std
256 20 baseline 91.39% 1
256 80 SESEMI 92.95% ± 0.12 3,mean±std
256 200 SESEMI 93.96% ± 0.23 3,mean±std

Imagenette w/Label Noise = 50%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 66.60% 1
128 20 baseline 79.36% 1
128 80 baseline 50.80% 1
128 200 baseline 52.18% 1
192 5 baseline 67.54% 1
192 20 baseline 79.34% 1
192 80 baseline 52.51% 1
192 200 baseline 53.71% 1
256 5 SESEMI 76.72% ± 0.83 5,mean±std
256 20 baseline 79.21% 1
256 80 SESEMI 57.76% ± 0.39 3,mean±std
256 200 SESEMI 61.48% ± 0.33 3,mean±std

Imagewoof Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 depthwise(x6) 76.61% 5, mean
128 20 depthwise(x4) 86.27% 5, mean
128 80 depthwise(x4) 87.83% 1
128 200 fastai2 train_imagenette.py 2020-01 87.20% 1
192 5 depthwise(x4) 81.15% 5, mean
192 20 depthwise(x4) 88.37% 5, mean
192 80 depthwise(x2) 90.30% 1
192 200 fastai2 train_imagenette.py 2020-01 89.54% 1
256 5 Resnet Trick + Mish + Sa + MaxBlurPool 78,84% 5, mean
256 20 Resnet Trick + Mish + Sa + MaxBlurPool 88,58% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 90.48% 1
256 200 fastai2 train_imagenette.py 2020-01 90.38% 1

Image网 Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 SwAV 72.94% 5,mean
128 20 SwAV 72.18% 3,mean
128 80 SwAV 69.53% 1
128 200 SwAV 66.04% 1
192 5 SwAV 77.07% 5,mean
192 20 SwAV 77.81% 3,mean
192 80 SwAV 74.9% 1
192 200 SwAV 71.77% 1
256 5 SwAV 79.56% 5,mean
256 20 SwAV 79.2% 3,mean
256 80 SESEMI 78.41% ± 0.39 5,mean±std
256 200 SESEMI 79.27% ± 0.20 3,mean±std
Owner
fast.ai
fast.ai
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022