Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Overview

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics

@WIFS2021 (Montpellier, France)

Rony Abecidan, Vincent Itier, Jeremie Boulanger, Patrick Bas

Installation

To be able to reproduce our experiments and do your own ones, please follow our Installation Instructions

Architecture used

Domain Adaptation in action

  • Source : Half of images from the Splicing category of DEFACTO
  • Target : Other half of the images from the Splicing category of DEFACTO, compressed to JPEG with a quality factor of 5%

To have a quick idea of the adaptation impact on the training phase, we selected a batch of size 512 from the target and, we represented the evolution of the final embeddings distributions from this batch during the training according to the setups SrcOnly and Update($\sigma=8$) described in the paper. The training relative to the SrcOnly setup is on the left meanwhile the one relative to Update($\sigma=8$) is on the right.

Don't hesitate to click on the gif below to see it better !

  • As you can observe, in the SrcOnly setup, the forgery detector is more and more prone to false alarms, certainly because compressing images to QF5 results in creating artifacts in the high frequencies that can be misinterpreted by the model. However, it has no real difficulty to identify correctly the forged images.

  • In parallel, in the Update setup, the forgery detector is more informed and make less false alarms during the training.

Discrepancies with the first version of our article

Several modifications have been carried out since the writing of this paper in order to :

  • Generate databases as most clean as possible
  • Make our results as most reproducible as possible
  • Reduce effectively computation time and memory space

Considering that remark, you will not exactly retrieve the results we shared in the first version of the paper with the implementation proposed here. Nevertheless, the results we got from this new implementation are comparable with the previous ones and you should obtain similar results as the ones shared in this page.

For more information about the modifications we performed and the reasons behind, click here

Main references

@inproceedings{mandelli2020training,
  title={Training {CNNs} in Presence of {JPEG} Compression: Multimedia Forensics vs Computer Vision},
  author={Mandelli, Sara and Bonettini, Nicol{\`o} and Bestagini, Paolo and Tubaro, Stefano},
  booktitle={2020 IEEE International Workshop on Information Forensics and Security (WIFS)},
  pages={1--6},
  year={2020},
  organization={IEEE}
}

@inproceedings{bayar2016,
  title={A deep learning approach to universal image manipulation detection using a new convolutional layer},
  author={Bayar, Belhassen and Stamm, Matthew C},
  booktitle={Proceedings of the 4th ACM workshop on information hiding and multimedia security (IH\&MMSec)},
  pages={5--10},
  year={2016}
}

@inproceedings{long2015learning,
  title={Learning transferable features with deep adaptation networks},
  author={Long, M. and Cao, Y. and Wang, J. and Jordan, M.},
  booktitle={International Conference on Machine Learning},
  pages={97--105},
  year={2015},
  organization={PMLR}
}


@inproceedings{DEFACTODataset, 
	author = {Ga{\"e}l Mahfoudi and Badr Tajini and Florent Retraint and Fr{\'e}d{\'e}ric Morain-Nicolier and Jean Luc Dugelay and Marc Pic},
	title={{DEFACTO:} Image and Face Manipulation Dataset},
	booktitle={27th European Signal Processing Conference (EUSIPCO 2019)},
	year={2019}
}

Citing our paper

If you wish to refer to our paper, please use the following BibTeX entry

@inproceedings{abecidan:hal-03374780,
  TITLE = {{Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics}},
  AUTHOR = {Abecidan, Rony and Itier, Vincent and Boulanger, J{\'e}r{\'e}mie and Bas, Patrick},
  URL = {https://hal.archives-ouvertes.fr/hal-03374780},
  BOOKTITLE = {{WIFS 2021 : IEEE International Workshop on Information Forensics and Security}},
  ADDRESS = {Montpellier, France},
  PUBLISHER = {{IEEE}},
  YEAR = {2021},
  MONTH = Dec,
  PDF = {https://hal.archives-ouvertes.fr/hal-03374780/file/2021_wifs.pdf},
  HAL_ID = {hal-03374780}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022