【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

Related tags

Deep LearningVRGNet
Overview

From Rain Generation to Rain Removal (CVPR2021)

Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng

[PDF&&Supplementary Material]

Abstract

For the single image rain removal (SIRR) task, the performance of deep learning (DL)-based methods is mainly affected by the designed deraining models and training datasets. Most of current state-of-the-art focus on constructing powerful deep models to obtain better deraining results. In this paper, to further improve the deraining performance, we novelly attempt to handle the SIRR task from the perspective of training datasets by exploring a more efficient way to synthesize rainy images. Specifically, we build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator with the input as some latent variables representing the physical structural rain factors, e.g., direction, scale, and thickness. To solve this model, we employ the variational inference framework to approximate the expected statistical distribution of rainy image in a data-driven manner. With the learned generator, we can automatically and sufficiently generate diverse and non-repetitive training pairs so as to efficiently enrich and augment the existing benchmark datasets. User study qualitatively and quantitatively evaluates the realism of generated rainy images. Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution that not only helps significantly improve the deraining performance of current deep single image derainers, but also largely loosens the requirement of large training sample pre-collection for the SIRR task.

Dependicies

pip install -r requirements.txt

Folder Directory

.
|-- for_spa                                   : Experiments on real SPA-Data
|   |-- data                                  : SPA-Data: train + test
|   |   `-- spa-data 
|   |       |-- real_world              
|   |       |-- real_world.txt
|   |       |-- real_world_gt
|   |       `-- test  
|   |-- train_spa_joint.py                    : Joint training on SPA-Data
|   |-- train_spa_aug.py                      : Augmentated training
|   |-- train_spa_smallsample_aug.py          : Small sample experiments (GNet in Table 1)
|   |-- train_spa_smallsample_noaug.py        : Small sample experiments (Baseline in Table 1)
|   |-- test_disentanglement.py               : Distentanglement experiments on SPA-Data
|   |-- test_interpolation.py                 : Interpolation experiments on SPA-Data
|   |-- spamodels                             : Joint pretrained model on SPA-Data

|-- for_syn                                   : Experiments on synthesized datasets
|   |-- data                                  : Synthesized datasets: train + test
|   |   |-- rain100H
|   |   |   |-- test
|   |   |   `-- train
|   |   |-- rain100L
|   |   |   |-- test
|   |   |   `-- train
|   |   `-- rain1400
|   |       |-- test
|   |       `-- train
|   |-- train_syn_joint.py                    : Joint training
|   |-- train_syn_aug.py                      : Augmentated training in Table 2
|   |-- test_disentanglement.py               : Distentanglement experiments
|   |-- test_interpolation.py                 : Interpolation experiments 
|   |-- syn100hmodels                         : Joint pretrained model on rain100H
|   |-- syn100lmodels                         : Joint pretrained model on rain100L
|   |-- syn1400models                         : Joint pretrained model on rain1400

Benchmark Dataset

Synthetic datasets: Rain100L, Rain100H, Rain1400

Real datasets: SPA-Data, Internet-Data(only for testing)

Detailed descriptions refer to the Survey, SCIENCE CHINA Information Sciences2021

Please refer to RCDNet, CVPR2021 for downloading these datasets and put them into the corresponding folders according to the dictionary above.

For Synthetic Dataset (taking Rain100L as an example)

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_syn/ 
$ python train_syn_joint.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --log_dir "./syn100llogs/" --model_dir "./syn100lmodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_syn_aug.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --netED "./syn100lmodels/ED_state_700.pt" --log_dir "./aug_syn100llogs/" --model_dir "./aug_syn100lmodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_syn_joint.py  --data_path "./data/rain100L/test/small/rain" --netDerain "./syn100lmodels/DerainNet_state_700.pt" --save_path "./derained_results/rain100L/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_syn_aug.py  --data_path "./data/rain100L/test/small/rain" --model_dir "./aug_syn100lmodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/rain100L/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/rain100L/rain" --gt_path "./interpolation_results/test_data/rain100L/norain" --netED "./syn100lmodels/ED_state_700.pt"  --save_patch "./interpolation_results/test_data/rain100L/crop_patch/" --save_inputfake "./interpolation_results/generated_data/rain100L/input_fake" --save_rainfake "./interpolation_results/generated_data/rain100L/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./syn100lmodels/ED_state_700.pt" --save_fake "./disentanglement_results/rain100L/" --gpu_id 0  

For SPA-Data

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_spa/ 
$ python train_spa_joint.py  --data_path "./data/spa-data/" --log_dir "./spalogs/" --model_dir "./spamodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_spa_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --log_dir "./aug_spalogs/" --model_dir "./aug_spamodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Step 3. Small Sample Training: (taking baseline PReNet as an example)

$ python train_spa_smallsample_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --fake_ratio 0.5 --train_num 1000 --log_dir "./aug05_spalogs/" --model_dir "./aug05_spamodels/" --niter 200 --gpu_id 0  
$ python train_spa_smallsample_noaug.py  --data_path "./data/spa-data/" --fake_ratio 0.5 --train_num 1000 --log_dir "./noaug05_spalogs/" --model_dir "./noaug05_spamodels/" --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_spa_joint.py  --data_path "./data/spa-data/test/small/rain" --netDerain "./spamodels/DerainNet_state_800.pt" --save_path "./derained_results/spa-data/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug_spamodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/spa-data/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/spa-data/rain" --gt_path "./interpolation_results/test_data/spa-data/norain" --netED "./spamodels/ED_state_800.pt"  --save_patch "./interpolation_results/test_data/spa-data/crop_patch/" --save_inputfake "./interpolation_results/generated_data/spa-data/input_fake" --save_rainfake "./interpolation_results/generated_data/spa-data/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./spamodels/ED_state_800.pt" --save_fake "./disentanglement_results/spa-data/" --gpu_id 0  
  1. Small Sample Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug05_spamodels/Aug05_DerainNet_state_200.pt" --save_path "./aug05_derained_results/spa-data/" --gpu_id 0  
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./noaug05_spamodels/NoAug05_DerainNet_state_200.pt" --save_path "./noaug05_derained_results/spa-data/" --gpu_id 0  

For Internet-Data

The test model is trained on SPA-Data.

Pretrained Model and Usage

  1. We have provided the joint pretrained model saved in syn100lmodels, syn100hmodels, syn1400models, and spamodels. If needed, you can dirctly utilize them to augment the original training set without exectuting the joint training.

  2. We only provide the PReNet for an example during the augmented training/testing phase. This is a demo. In practice, you can easily replace PReNet with other deep deraining models as well as yours for further performance improvement by adopting the augmented strategy with our generator. Please note that the training details in train_syn_aug.pyand train_spa_aug.pyare needed to be correspondingly adjusted.

  3. Please note that in our default settings, the generated patchsize is 64x64. In the released code, we also provide the model revision (i.e., RNet, Generator, and discriminator) for generating the size as 256x256. If other sizes are needed, you can correspondingly revise the network layer and then re-train the joint VRGNet.

Rain Generation Experiments

    

          

Rain Removal Experiments

Derained Results of Our VRGNet (i.e., PReNet-)

All PSNR and SSIM results are computed with this Matlab code. If needed, please download the results from NetDisk (pwd:2q6l)

Citation

@InProceedings{Wang_2021_CVPR,  
author = {Wang, Hong and Yue, Zongsheng and Xie, Qi and Zhao, Qian and Zheng, Yefeng and Meng, Deyu},  
title = {From Rain Generation to Rain Removal},  
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},  
month = {June},  
year = {2021}  
}

Contact

If you have any question, please feel free to concat Hong Wang (Email: [email protected])

Owner
Hong Wang
Natural Image Enhancement and Restoration, Medical Image Reconstruction, Image Processing, Joint Model-Driven and Data-Driven
Hong Wang
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022