【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

Related tags

Deep LearningVRGNet
Overview

From Rain Generation to Rain Removal (CVPR2021)

Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng

[PDF&&Supplementary Material]

Abstract

For the single image rain removal (SIRR) task, the performance of deep learning (DL)-based methods is mainly affected by the designed deraining models and training datasets. Most of current state-of-the-art focus on constructing powerful deep models to obtain better deraining results. In this paper, to further improve the deraining performance, we novelly attempt to handle the SIRR task from the perspective of training datasets by exploring a more efficient way to synthesize rainy images. Specifically, we build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator with the input as some latent variables representing the physical structural rain factors, e.g., direction, scale, and thickness. To solve this model, we employ the variational inference framework to approximate the expected statistical distribution of rainy image in a data-driven manner. With the learned generator, we can automatically and sufficiently generate diverse and non-repetitive training pairs so as to efficiently enrich and augment the existing benchmark datasets. User study qualitatively and quantitatively evaluates the realism of generated rainy images. Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution that not only helps significantly improve the deraining performance of current deep single image derainers, but also largely loosens the requirement of large training sample pre-collection for the SIRR task.

Dependicies

pip install -r requirements.txt

Folder Directory

.
|-- for_spa                                   : Experiments on real SPA-Data
|   |-- data                                  : SPA-Data: train + test
|   |   `-- spa-data 
|   |       |-- real_world              
|   |       |-- real_world.txt
|   |       |-- real_world_gt
|   |       `-- test  
|   |-- train_spa_joint.py                    : Joint training on SPA-Data
|   |-- train_spa_aug.py                      : Augmentated training
|   |-- train_spa_smallsample_aug.py          : Small sample experiments (GNet in Table 1)
|   |-- train_spa_smallsample_noaug.py        : Small sample experiments (Baseline in Table 1)
|   |-- test_disentanglement.py               : Distentanglement experiments on SPA-Data
|   |-- test_interpolation.py                 : Interpolation experiments on SPA-Data
|   |-- spamodels                             : Joint pretrained model on SPA-Data

|-- for_syn                                   : Experiments on synthesized datasets
|   |-- data                                  : Synthesized datasets: train + test
|   |   |-- rain100H
|   |   |   |-- test
|   |   |   `-- train
|   |   |-- rain100L
|   |   |   |-- test
|   |   |   `-- train
|   |   `-- rain1400
|   |       |-- test
|   |       `-- train
|   |-- train_syn_joint.py                    : Joint training
|   |-- train_syn_aug.py                      : Augmentated training in Table 2
|   |-- test_disentanglement.py               : Distentanglement experiments
|   |-- test_interpolation.py                 : Interpolation experiments 
|   |-- syn100hmodels                         : Joint pretrained model on rain100H
|   |-- syn100lmodels                         : Joint pretrained model on rain100L
|   |-- syn1400models                         : Joint pretrained model on rain1400

Benchmark Dataset

Synthetic datasets: Rain100L, Rain100H, Rain1400

Real datasets: SPA-Data, Internet-Data(only for testing)

Detailed descriptions refer to the Survey, SCIENCE CHINA Information Sciences2021

Please refer to RCDNet, CVPR2021 for downloading these datasets and put them into the corresponding folders according to the dictionary above.

For Synthetic Dataset (taking Rain100L as an example)

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_syn/ 
$ python train_syn_joint.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --log_dir "./syn100llogs/" --model_dir "./syn100lmodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_syn_aug.py  --data_path "./data/rain100L/train/small/rain" --gt_path "./data/rain100L/train/small/norain" --netED "./syn100lmodels/ED_state_700.pt" --log_dir "./aug_syn100llogs/" --model_dir "./aug_syn100lmodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_syn_joint.py  --data_path "./data/rain100L/test/small/rain" --netDerain "./syn100lmodels/DerainNet_state_700.pt" --save_path "./derained_results/rain100L/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_syn_aug.py  --data_path "./data/rain100L/test/small/rain" --model_dir "./aug_syn100lmodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/rain100L/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/rain100L/rain" --gt_path "./interpolation_results/test_data/rain100L/norain" --netED "./syn100lmodels/ED_state_700.pt"  --save_patch "./interpolation_results/test_data/rain100L/crop_patch/" --save_inputfake "./interpolation_results/generated_data/rain100L/input_fake" --save_rainfake "./interpolation_results/generated_data/rain100L/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./syn100lmodels/ED_state_700.pt" --save_fake "./disentanglement_results/rain100L/" --gpu_id 0  

For SPA-Data

Training

Step 1. Joint Training:

$ cd ./VRGNet/for_spa/ 
$ python train_spa_joint.py  --data_path "./data/spa-data/" --log_dir "./spalogs/" --model_dir "./spamodels/" --gpu_id 0  

Step 2. Augmentated Training: (taking baseline PReNet as an example)

$ python train_spa_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --log_dir "./aug_spalogs/" --model_dir "./aug_spamodels/" --fake_ratio 0.5 --niter 200 --gpu_id 0  

Step 3. Small Sample Training: (taking baseline PReNet as an example)

$ python train_spa_smallsample_aug.py  --data_path "./data/spa-data/" --netED "./spamodels/ED_state_800.pt" --fake_ratio 0.5 --train_num 1000 --log_dir "./aug05_spalogs/" --model_dir "./aug05_spamodels/" --niter 200 --gpu_id 0  
$ python train_spa_smallsample_noaug.py  --data_path "./data/spa-data/" --fake_ratio 0.5 --train_num 1000 --log_dir "./noaug05_spalogs/" --model_dir "./noaug05_spamodels/" --niter 200 --gpu_id 0  

Testing

  1. Joint Testing:
$ python test_spa_joint.py  --data_path "./data/spa-data/test/small/rain" --netDerain "./spamodels/DerainNet_state_800.pt" --save_path "./derained_results/spa-data/" --gpu_id 0  
  1. Augmentated Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug_spamodels/Aug_DerainNet_state_200.pt" --save_path "./aug_derained_results/spa-data/" --gpu_id 0  
  1. Interpolation Testing:
$ python test_interpolation.py   --data_path "./interpolation_results/test_data/spa-data/rain" --gt_path "./interpolation_results/test_data/spa-data/norain" --netED "./spamodels/ED_state_800.pt"  --save_patch "./interpolation_results/test_data/spa-data/crop_patch/" --save_inputfake "./interpolation_results/generated_data/spa-data/input_fake" --save_rainfake "./interpolation_results/generated_data/spa-data/rain_fake" --gpu_id 0  
  1. Disentanglement Testing:
$ python test_disentanglement.py  --netED "./spamodels/ED_state_800.pt" --save_fake "./disentanglement_results/spa-data/" --gpu_id 0  
  1. Small Sample Testing: (taking baseline PReNet as an example)
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./aug05_spamodels/Aug05_DerainNet_state_200.pt" --save_path "./aug05_derained_results/spa-data/" --gpu_id 0  
$ python test_spa_aug.py  --data_path "./data/spa-data/test/small/rain" --model_dir "./noaug05_spamodels/NoAug05_DerainNet_state_200.pt" --save_path "./noaug05_derained_results/spa-data/" --gpu_id 0  

For Internet-Data

The test model is trained on SPA-Data.

Pretrained Model and Usage

  1. We have provided the joint pretrained model saved in syn100lmodels, syn100hmodels, syn1400models, and spamodels. If needed, you can dirctly utilize them to augment the original training set without exectuting the joint training.

  2. We only provide the PReNet for an example during the augmented training/testing phase. This is a demo. In practice, you can easily replace PReNet with other deep deraining models as well as yours for further performance improvement by adopting the augmented strategy with our generator. Please note that the training details in train_syn_aug.pyand train_spa_aug.pyare needed to be correspondingly adjusted.

  3. Please note that in our default settings, the generated patchsize is 64x64. In the released code, we also provide the model revision (i.e., RNet, Generator, and discriminator) for generating the size as 256x256. If other sizes are needed, you can correspondingly revise the network layer and then re-train the joint VRGNet.

Rain Generation Experiments

    

          

Rain Removal Experiments

Derained Results of Our VRGNet (i.e., PReNet-)

All PSNR and SSIM results are computed with this Matlab code. If needed, please download the results from NetDisk (pwd:2q6l)

Citation

@InProceedings{Wang_2021_CVPR,  
author = {Wang, Hong and Yue, Zongsheng and Xie, Qi and Zhao, Qian and Zheng, Yefeng and Meng, Deyu},  
title = {From Rain Generation to Rain Removal},  
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},  
month = {June},  
year = {2021}  
}

Contact

If you have any question, please feel free to concat Hong Wang (Email: [email protected])

Owner
Hong Wang
Natural Image Enhancement and Restoration, Medical Image Reconstruction, Image Processing, Joint Model-Driven and Data-Driven
Hong Wang
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Api's bulid in Flask perfom to manage Todo Task.

Citymall-task Api's bulid in Flask perfom to manage Todo Task. Installation Requrements : Python: 3.10.0 MongoDB create .env file with variables DB_UR

Aisha Tayyaba 1 Dec 17, 2021
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022