Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Overview

EfficientDet: Scalable and Efficient Object Detection, in PyTorch

A PyTorch implementation of EfficientDet from the 2019 paper by Mingxing Tan Ruoming Pang Quoc V. Le Google Research, Brain Team. The official and original: comming soon.

Fun with Demo:

python demo.py --weight ./checkpoint_VOC_efficientdet-d1_97.pth --threshold 0.6 --iou_threshold 0.5 --cam --score

Table of Contents

       

Recent Update

  • [06/01/2020] Support both DistributedDataParallel and DataParallel, change augmentation, eval_voc
  • [17/12/2019] Add Fast normalized fusion, Augmentation with Ratio, Change RetinaHead, Fix Support EfficientDet-D0->D7
  • [7/12/2019] Support EfficientDet-D0, EfficientDet-D1, EfficientDet-D2, EfficientDet-D3, EfficientDet-D4,... . Support change gradient accumulation steps, AdamW.

Benchmarking

We benchmark our code thoroughly on three datasets: pascal voc and coco, using family efficientnet different network architectures: EfficientDet-D0->7. Below are the results:

1). PASCAL VOC 2007 (Train/Test: 07trainval/07test, scale=600, ROI Align)

model   mAP
[EfficientDet-D0(with Weight)](https://drive.google.com/file/d/1r7MAyBfG5OK_9F_cU8yActUWxTHOuOpL/view?usp=sharing 62.16

Installation

  • Install PyTorch by selecting your environment on the website and running the appropriate command.
  • Clone this repository and install package prerequisites below.
  • Then download the dataset by following the instructions below.
  • Note: For training, we currently support VOC and COCO, and aim to add ImageNet support soon.

prerequisites

  • Python 3.6+
  • PyTorch 1.3+
  • Torchvision 0.4.0+ (We need high version because Torchvision support nms now.)
  • requirements.txt

Datasets

To make things easy, we provide bash scripts to handle the dataset downloads and setup for you. We also provide simple dataset loaders that inherit torch.utils.data.Dataset, making them fully compatible with the torchvision.datasets API.

VOC Dataset

PASCAL VOC: Visual Object Classes

Download VOC2007 + VOC2012 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh datasets/scripts/VOC2007.sh
sh datasets/scripts/VOC2012.sh

COCO

Microsoft COCO: Common Objects in Context

Download COCO 2017
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh datasets/scripts/COCO2017.sh

Training EfficientDet

  • To train EfficientDet using the train script simply specify the parameters listed in train.py as a flag or manually change them.
python train.py --network effcientdet-d0  # Example
  • With VOC Dataset:
# DataParallel
python train.py --dataset VOC --dataset_root /root/data/VOCdevkit/ --network effcientdet-d0 --batch_size 32 
# DistributedDataParallel with backend nccl
python train.py --dataset VOC --dataset_root /root/data/VOCdevkit/ --network effcientdet-d0 --batch_size 32 --multiprocessing-distributed
  • With COCO Dataset:
# DataParallel
python train.py --dataset COCO --dataset_root ~/data/coco/ --network effcientdet-d0 --batch_size 32
# DistributedDataParallel with backend nccl
python train.py --dataset COCO --dataset_root ~/data/coco/ --network effcientdet-d0 --batch_size 32 --multiprocessing-distributed

Evaluation

To evaluate a trained network:

  • With VOC Dataset:
    python eval_voc.py --dataset_root ~/data/VOCdevkit --weight ./checkpoint_VOC_efficientdet-d0_261.pth
  • With COCO Dataset comming soon.

Demo

python demo.py --threshold 0.5 --iou_threshold 0.5 --score --weight checkpoint_VOC_efficientdet-d1_34.pth --file_name demo.png

Output:

Webcam Demo

You can use a webcam in a real-time demo by running:

python demo.py --threshold 0.5 --iou_threshold 0.5 --cam --score --weight checkpoint_VOC_efficientdet-d1_34.pth

Performance

TODO

We have accumulated the following to-do list, which we hope to complete in the near future

  • Still to come:
    • EfficientDet-[D0-7]
    • GPU-Parallel
    • NMS
    • Soft-NMS
    • Pretrained model
    • Demo
    • Model zoo
    • TorchScript
    • Mobile
    • C++ Onnx

Authors

Note: Unfortunately, this is just a hobby of ours and not a full-time job, so we'll do our best to keep things up to date, but no guarantees. That being said, thanks to everyone for your continued help and feedback as it is really appreciated. We will try to address everything as soon as possible.

References

Citation

@article{efficientdetpytoan,
    Author = {Toan Dao Minh},
    Title = {A Pytorch Implementation of EfficientDet Object Detection},
    Journal = {github.com/toandaominh1997/EfficientDet.Pytorch},
    Year = {2019}
}
Owner
tonne
Machine Learning, Deep Learning, Graph Representation Learning, Reinforcement Learning
tonne
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022