I will implement Fastai in each projects present in this repository.

Overview

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH

The repository contains a list of the projects which I have worked on while reading the book Deep Learning For Coders with Fastai and PyTorch.

📚 NOTEBOOKS:

1. INTRODUCTION

  • The Introduction notebook is a comprehensive notebook as it contains a list of projects such as Cat and Dog Classification, Semantic Segmentation, Sentiment Classification, Tabular Classification and Recommendation System.

2. MODEL PRODUCTION

  • The BearDetector notebook contains all the dependencies for a complete Image Classification project.

3. TRAINING A CLASSIFIER

  • The DigitClassifier notebook contains all the dependencies required for Image Classification project from scratch.

4. IMAGE CLASSIFICATION

  • The Image Classification notebook contains all the dependencies for Image Classification such as getting image data ready for modeling i.e presizing and data block summary and for fitting the model i.e learning rate finder, unfreezing, discriminative learning rates, setting the number of epochs and using deeper architectures. It has explanations of cross entropy loss function as well.

5. MULTILABEL CLASSIFICATION AND REGRESSION

  • The Multilabel Classification notebook contains all the dependencies required to understand Multilabel Classification. It contains the explanations of initializing DataBlock and DataLoaders. The Regression notebook contains all the dependencies required to understand Image Regression.

6. ADVANCED CLASSIFICATION

  • The Imagenette Classification notebook contains all the dependencies required to train a state of art machine learning model in computer vision whether from scratch or using transfer learning. It contains explanations and implementation of Normalization, Progressive Resizing, Test Time Augmentation, Mixup Augmentation and Label Smoothing.

7. COLLABORATIVE FILTERING

  • The Collaborative Filtering notebook contains all the dependencies required to build a Recommendation System. It presents how gradient descent can learn intrinsic factors or biases about items from a history of ratings which then gives information about the data.

8. TABULAR MODELING

  • The Tabular Model notebook contains all the dependencies required for Tabular Modeling. It presents the detailed explanations of two approaches to Tabular Modeling: Decision Tree Ensembles and Neural Networks.

9. NATURAL LANGUAGE PROCESSING

  • The NLP notebook contains all the dependencies required build Language Model that can generate texts and a Classifier Model that determines whether a review is positive or negative. It presents the state of art Classifier Model which is build using a pretrained language model and fine tuned it to the corpus of task. Then the Encoder model is used for classification.

10. DATA MUNGING

  • The DataMunging notebook contains all the dependencies required to implement mid level API of Fast.ai in Natural Language Processing and Computer Vision which provides greater flexibility to apply transformations on data items.

11. LANGUAGE MODEL FROM SCRATCH

  • The LanguageModel notebook contains all the dependencies that is inside AWD-LSTM architecture for Text Classification. It presents the implementation of Language Model using simple Linear Model, Recurrent Neural Network, Long Short Term Memory, Dropout Regularization and Activation Regularization.

12. CONVOLUTIONAL NEURAL NETWORK

  • The CNN notebook contains all the dependencies required to understand Convolutional Neural Networks. Convolutions are just a type of matrix multiplication with two constraints on the weight matrix: some elements are always zero and some elements are tied or forced to always have the same value.

13. RESIDUAL NETWORKS

  • The ResNets notebook contains all the dependencies required to understand the implementation of skip connections which allow deeper models to be trained. ResNet is the pretrained model when using Transfer Learning.

14. ARCHITECTURE DETAILS

  • The Architecture Details notebook contains all the dependencies required to create a complete state of art computer vision models. It presents some aspects of natural language processing as well.

15. TRAINING PROCESS

  • The Training notebook contains all the dependencies required to create a training loop and explored variants of Stochastic Gradient Descent.

16. NEURAL NETWORK FOUNDATIONS

  • The Neural Foundations notebook contains all the dependencies required to understand the foundations of deep learning, begining with matrix multiplication and moving on to implementing the forward and backward passes of a neural net from scratch.

17. CNN INTERPRETATION WITH CAM

  • The CNN Interpretation notebook presents the implementation of Class Activation Maps in model interpretation. Class activation maps give insights into why a model predicted a certain result by showing the areas of images that were most responsible for a given prediction.

18. FASTAI LEARNER FROM SCRATCH

  • The Fastai Learner notebook contains all the dependencies to understand the key concepts of Fastai.

19. CHEST X-RAYS CLASSIFICATION

20. TRANSFORMERS MODEL

Owner
Thinam Tamang
Machine Learning and Deep Learning
Thinam Tamang
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023