Tools to download and cleanup Common Crawl data

Related tags

Text Data & NLPcc_net
Overview

cc_net

Tools to download and clean Common Crawl as introduced in our paper CCNet.

If you found these resources useful, please consider citing:

@inproceedings{wenzek2020ccnet,
  title={CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data},
  author={Wenzek, Guillaume and Lachaux, Marie-Anne and Conneau, Alexis and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Joulin, Armand and Grave, {\'E}douard},
  booktitle={Proceedings of The 12th Language Resources and Evaluation Conference},
  pages={4003--4012},
  year={2020}
}

CircleCI

Installation

We only tried this on Linux but installation should be possible on MacOS too.

  1. Create or simlink a data folder to where you want to download the corpus.

  2. Run make install. This will download some resources and install required packages.

  3. If you have a C++ 17 compiler you can also run pip install .[getpy], it provides more memory efficient hashset.

  4. Install the following tools manually if make install failed:

Training Language Models

The Makefile is used to train Sentence Piece and LM on Wikipedia data.

  • make help shows help
  • make lang=de lm trains a Sentence Piece and a LM on German Wikipedia
  • make all_lm trains the same model than in the paper
  • make lang=de dl_lm downloads the LM trained for the paper
  • make dl_all_lm downloads all of them

Pipeline overview

The full mining pipeline is divided in 3 steps:

  • hashes downloads one Common-Crawl snapshot, and compute hashes for each paragraph
  • mine removes duplicates, detects language, run the LM and split by lang/perplexity buckets
  • regroup regroup the files created by mine in chunks of 4Gb

Each step needs the previous step to be over before starting. You can launch the full pipeline using python -m cc_net.

  • python -m cc_net --help shows help
  • python -m cc_net --dump 2019-13 treats a specific snapshot
  • python -m cc_net -l my -l gu restricts to specific languages
  • python -m cc_net --lm_dir my_lms/ uses custom LMs
  • python -m cc_net --lang_threshold 0.3 set a specific field in mine.Config
  • python -m cc_net --config test runs on a tiny subset of a snapshot
  • python -m cc_net --config config/my_config.json uses configuration from the given config file

Reproducing our work

Given the CPU required to run the full pipeline on such a big corpus we share a mapping from url to the information we computed. You can reconstruct the corpus used in the paper by using:

python -m cc_net --conf reproduce --dump 2019-09

Extract XLM-R data

Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa) paper was trained on data extracted by an internal version of cc_net.

Due to the format being a little bit different please use the following command instead:

python cc_net/tools/dl_cc_100.py --help
python cc_net/tools/dl_cc_100.py --outdir data_cc100 --process 8

If you use this version of the data please also consider citing:

@article{conneau2019unsupervised,
  title={Unsupervised Cross-lingual Representation Learning at Scale},
  author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
  journal={arXiv preprint arXiv:1911.02116},
  year={2019}
}

Adapting to your infrastructure

Given the computation cost of running the full pipeline we distributed the computation on a Slurm cluster using submitit. submitit will default to spawning processes on your machine if Slurm cluster is found. You should tweak --task_parallelism to something adapated to your machine. Defaults are 512 for mining and 20 for reproducing.

To run the tasks in-process use --execution debug.

Output format

Generated files are compressed JSON files. There is one JSON object per line.

List of fields:

  • url: webpage URL (part of CC)
  • date_download: date of download (part of CC)
  • digest: sha1 digest of the webpage (part of CC)
  • length: number of chars
  • nlines: number of lines
  • source_domain: web domain of the webpage
  • title: page title (part of CC)
  • raw_content: webpage content after deduplication
  • original_nlines: number of lines before deduplication
  • original_length: number of chars before deduplication
  • language: language detected by FastText LID
  • language_score: language score
  • perplexity: perplexity of a LM trained on Wikipedia

Sample JSON object:

{
  "url": "http://www.pikespeakhospice.org/members/1420",
  "date_download": "2019-02-15T18:40:25Z",
  "digest": "sha1:VQW3KXUOALO543IJGTK2JLVEAN2XXKHI",
  "length": 752,
  "nlines": 5,
  "source_domain": "www.pikespeakhospice.org",
  "title": "LeeRoy Aragon",
  "raw_content": "Date Honored: March 2017\nHe was a man of integrity, a hard worker, and a dedicated family man. He loved spending time with family camping, fishing, hunting, boating and just hanging out.\nHis Catholic faith was extremely important to him as he gave of his time and talents to the community. He had many friends through church and the Knights of Columbus. He was a meticulous handyman, and enjoyed building and fixing things and restoring antique furniture to perfection. He was a fan and supported his Colorado Rockies and Denver Broncos. Throughout the years he had devoted four-legged friends (his dogs and a horse named Sunny Boy).\nWe have many cherished memories of him that we will treasure until we are with him again.\n~ Family of LeeRoy F. Aragon",
  "original_nlines": 7,
  "original_length": 754,
  "language": "en",
  "language_score": 0.99,
  "perplexity": 255.11,
}

You can peak at those files using UNIX tools zcat and jq, eg: zcat data/mined/2019-09/en_head_0000.json.gz | head -1 | jq .

jq can do some complicated filtering. jsonql.py provides a Python API with multiprocess support to do more complicated operations like LM scoring of the document.

License

By contributing to cc_net, you agree that your contributions will be licensed under the LICENSE file in the root directory of this source tree.

Owner
Meta Research
Meta Research
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022