Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

Related tags

Text Data & NLPNERDA
Overview

NERDA

Build status codecov PyPI PyPI - Downloads License

Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning pretrained transformers for Named Entity Recognition (=NER) tasks.

You can also utilize NERDA to access a selection of precooked NERDA models, that you can use right off the shelf for NER tasks.

NERDA is built on huggingface transformers and the popular pytorch framework.

Installation guide

NERDA can be installed from PyPI with

pip install NERDA

If you want the development version then install directly from GitHub.

Named-Entity Recogntion tasks

Named-entity recognition (NER) (also known as (named) entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc.1

Example Task:

Task

Identify person names and organizations in text:

Jim bought 300 shares of Acme Corp.

Solution

Named Entity Type
'Jim' Person
'Acme Corp.' Organization

Read more about NER on Wikipedia.

Train Your Own NERDA Model

Say, we want to fine-tune a pretrained Multilingual BERT transformer for NER in English.

Load package.

from NERDA.models import NERDA

Instantiate a NERDA model (with default settings) for the CoNLL-2003 English NER data set.

from NERDA.datasets import get_conll_data
model = NERDA(dataset_training = get_conll_data('train'),
              dataset_validation = get_conll_data('valid'),
              transformer = 'bert-base-multilingual-uncased')

By default the network architecture is analogous to that of the models in Hvingelby et al. 2020.

The model can then be trained/fine-tuned by invoking the train method, e.g.

model.train()

Note: this will take some time depending on the dimensions of your machine (if you want to skip training, you can go ahead and use one of the models, that we have already precooked for you in stead).

After the model has been trained, the model can be used for predicting named entities in new texts.

# text to identify named entities in.
text = 'Old MacDonald had a farm'
model.predict_text(text)
([['Old', 'MacDonald', 'had', 'a', 'farm']], [['B-PER', 'I-PER', 'O', 'O', 'O']])

This means, that the model identified 'Old MacDonald' as a PERson.

Please note, that the NERDA model configuration above was instantiated with all default settings. You can however customize your NERDA model in a lot of ways:

  • Use your own data set (finetune a transformer for any given language)
  • Choose whatever transformer you like
  • Set all of the hyperparameters for the model
  • You can even apply your own Network Architecture

Read more about advanced usage of NERDA in the detailed documentation.

Use a Precooked NERDA model

We have precooked a number of NERDA models for Danish and English, that you can download and use right off the shelf.

Here is an example.

Instantiate a multilingual BERT model, that has been finetuned for NER in Danish, DA_BERT_ML.

from NERDA.precooked import DA_BERT_ML()
model = DA_BERT_ML()

Down(load) network from web:

model.download_network()
model.load_network()

You can now predict named entities in new (Danish) texts

# (Danish) text to identify named entities in:
# 'Jens Hansen har en bondegård' = 'Old MacDonald had a farm'
text = 'Jens Hansen har en bondegård'
model.predict_text(text)
([['Jens', 'Hansen', 'har', 'en', 'bondegård']], [['B-PER', 'I-PER', 'O', 'O', 'O']])

List of Precooked Models

The table below shows the precooked NERDA models publicly available for download.

Model Language Transformer Dataset F1-score
DA_BERT_ML Danish Multilingual BERT DaNE 82.8
DA_ELECTRA_DA Danish Danish ELECTRA DaNE 79.8
EN_BERT_ML English Multilingual BERT CoNLL-2003 90.4
EN_ELECTRA_EN English English ELECTRA CoNLL-2003 89.1

F1-score is the micro-averaged F1-score across entity tags and is evaluated on the respective test sets (that have not been used for training nor validation of the models).

Note, that we have not spent a lot of time on actually fine-tuning the models, so there could be room for improvement. If you are able to improve the models, we will be happy to hear from you and include your NERDA model.

Model Performance

The table below summarizes the performance (F1-scores) of the precooked NERDA models.

Level DA_BERT_ML DA_ELECTRA_DA EN_BERT_ML EN_ELECTRA_EN
B-PER 93.8 92.0 96.0 95.1
I-PER 97.8 97.1 98.5 97.9
B-ORG 69.5 66.9 88.4 86.2
I-ORG 69.9 70.7 85.7 83.1
B-LOC 82.5 79.0 92.3 91.1
I-LOC 31.6 44.4 83.9 80.5
B-MISC 73.4 68.6 81.8 80.1
I-MISC 86.1 63.6 63.4 68.4
AVG_MICRO 82.8 79.8 90.4 89.1
AVG_MACRO 75.6 72.8 86.3 85.3

'NERDA'?

'NERDA' originally stands for 'Named Entity Recognition for DAnish'. However, this is somewhat misleading, since the functionality is no longer limited to Danish. On the contrary it generalizes to all other languages, i.e. NERDA supports fine-tuning of transformers for NER tasks for any arbitrary language.

Background

NERDA is developed as a part of Ekstra Bladet’s activities on Platform Intelligence in News (PIN). PIN is an industrial research project that is carried out in collaboration between the Technical University of Denmark, University of Copenhagen and Copenhagen Business School with funding from Innovation Fund Denmark. The project runs from 2020-2023 and develops recommender systems and natural language processing systems geared for news publishing, some of which are open sourced like NERDA.

Shout-outs

Read more

The detailed documentation for NERDA including code references and extended workflow examples can be accessed here.

Contact

We hope, that you will find NERDA useful.

Please direct any questions and feedbacks to us!

If you want to contribute (which we encourage you to), open a PR.

If you encounter a bug or want to suggest an enhancement, please open an issue.

Owner
Ekstra Bladet
GitHub of Ekstra Bladet Analyse
Ekstra Bladet
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022