Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Overview

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

April 6, 2021

We extended segment-means to compute landmarks without requiring the sequence length divisible by the number of landmarks. Then we used this Nystromformer to perform deployment of T2T-Vit_t-14 for image classification without retraining. Our T2T-ViT-Nys-14 achieves 78% top-1 accuracy, outperforming performer/Linformer +4.3%/+12.7% for the direct deployment.

Feb 27th, 2021

We fixed the coefficient computation of initial Z_0, which can lead to faster convergence to pseudoinverse. The original implementation has a scale difference. We leave the original as a default option. The added initialization is recommended. Thanks @sbodenstein for pointing out the difference.

Feb 17th, 2021

We have released the source code of PyTorch reimplementation of Long Range Arena (LRA) benchmark, which is to evaluate the generalization ability of models on diverse longer sequence tasks. Our codes are based on the official Jax LRA implementation. Reformer PyTorch implementation is from huggingface and Performer PyTorch implementation is from lucidrains.

Feb 14th, 2021

We have released the scores on individual LRA tasks.

Feb 9th, 2021

We have release the average score across LRA tasks.

Transformers have emerged as a powerful workhorse for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is their self-attention mechanism that identifies/encodes the influence or dependence of other tokens for each specific token. Its benefits notwithstanding, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences – a topic being actively studied in the community. To address this limitation, we propose Nystromformer – a model that exhibits excellent scalability as a function of sequence length. Our idea is based on adapting the Nystrom method to approximate the standard self-attention with an efficient O(n) complexity.

Requirements

docker, nvidia-docker

Datasets

The pretraining dataset consists of English Wikipedia and BookCorpus. For pretraining on long sequence, we added one third Stories and one third Realnews. All downloaded data files should be placed in the corresponding folder under data-preprocessing. The original format of English Wikipedia dump is preprocessed using wikiextractor, and the resulting files are placed in data-preprocessing/wiki. Then, run data-preprocessing/ /preprocess.py under each corresponding folder to generate data files of unified format. After preprocessing, run data-preprocessing/preprocess_data_ .py to generate pretraining data of specific sequence length.

Pretraining

To start pretraining of a specific configuration: create a folder (for example, nystrom-512) and write /config.json to specify model and training configuration, then under folder, run

> /model/pretrain.txt 2>&1"">
docker run --rm --name=pretrain \
  --network=host --ipc=host --gpus all \
  -v "$PWD/../data-preprocessing/512-roberta:/dataset" \
  -v "$PWD/../code:/code" \
  -v "$PWD:/model" \
  -d mlpen/bert_env:0 \
  /bin/bash -c \
  "python3 /code/run_pretrain.py >> /model/pretrain.txt 2>&1"

All outputs will be redirected to /pretrain.txt . The command will create a /model folder holding all checkpoints and log file. The training can be stopped anytime by running docker kill pretrain, and can be resumed from the last checkpoint using the same command for starting pretraining.

Pretraining from Different Model's Checkpoint

Copy a checkpoint (one of .model or .cp file) from /model folder to folder and add a key-value pair in /config.json : "from_cp": "/model/ " . One example is shown in nystrom-4096/config.json. This procedure also works for extending the max sequence length of a model (For example, use nystrom-512 pretrained weights as initialization for nystrom-4096).

GLUE

To finetune model on GLUE tasks, download GLUE datasets and place them under glue folder, then under folder , run

> /model/glue.txt 2>&1"">
docker run --rm --name=glue \
  --network=host --ipc=host --gpus all \
  -v "$PWD/../glue:/glue" \
  -v "$PWD/../code:/code" \
  -v "$PWD:/model" \
  -d mlpen/bert_env:0 \
  /bin/bash -c \
  "python3 /code/run_glue.py --batch_size 32 --lr 3e-5 --epoch 5 --task MRPC --checkpoint 99 >> /model/glue.txt 2>&1"

batch_size, lr, epoch, task, checkpoint can be changed to finetune on different task, different hyperparameters, or different checkpoints. All outputs will be redirected to /glue.txt . The log file is located at /model folder.

Citation

@article{xiong2021nystromformer,
  title={Nystr{\"o}mformer: A Nystr{\"o}m-based Algorithm for Approximating Self-Attention},
  author={Xiong, Yunyang and Zeng, Zhanpeng and Chakraborty, Rudrasis and Tan, Mingxing and Fung, Glenn and Li, Yin and Singh, Vikas},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}
Owner
Zhanpeng Zeng
Zhanpeng Zeng
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023