Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Overview

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

April 6, 2021

We extended segment-means to compute landmarks without requiring the sequence length divisible by the number of landmarks. Then we used this Nystromformer to perform deployment of T2T-Vit_t-14 for image classification without retraining. Our T2T-ViT-Nys-14 achieves 78% top-1 accuracy, outperforming performer/Linformer +4.3%/+12.7% for the direct deployment.

Feb 27th, 2021

We fixed the coefficient computation of initial Z_0, which can lead to faster convergence to pseudoinverse. The original implementation has a scale difference. We leave the original as a default option. The added initialization is recommended. Thanks @sbodenstein for pointing out the difference.

Feb 17th, 2021

We have released the source code of PyTorch reimplementation of Long Range Arena (LRA) benchmark, which is to evaluate the generalization ability of models on diverse longer sequence tasks. Our codes are based on the official Jax LRA implementation. Reformer PyTorch implementation is from huggingface and Performer PyTorch implementation is from lucidrains.

Feb 14th, 2021

We have released the scores on individual LRA tasks.

Feb 9th, 2021

We have release the average score across LRA tasks.

Transformers have emerged as a powerful workhorse for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is their self-attention mechanism that identifies/encodes the influence or dependence of other tokens for each specific token. Its benefits notwithstanding, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences – a topic being actively studied in the community. To address this limitation, we propose Nystromformer – a model that exhibits excellent scalability as a function of sequence length. Our idea is based on adapting the Nystrom method to approximate the standard self-attention with an efficient O(n) complexity.

Requirements

docker, nvidia-docker

Datasets

The pretraining dataset consists of English Wikipedia and BookCorpus. For pretraining on long sequence, we added one third Stories and one third Realnews. All downloaded data files should be placed in the corresponding folder under data-preprocessing. The original format of English Wikipedia dump is preprocessed using wikiextractor, and the resulting files are placed in data-preprocessing/wiki. Then, run data-preprocessing/ /preprocess.py under each corresponding folder to generate data files of unified format. After preprocessing, run data-preprocessing/preprocess_data_ .py to generate pretraining data of specific sequence length.

Pretraining

To start pretraining of a specific configuration: create a folder (for example, nystrom-512) and write /config.json to specify model and training configuration, then under folder, run

> /model/pretrain.txt 2>&1"">
docker run --rm --name=pretrain \
  --network=host --ipc=host --gpus all \
  -v "$PWD/../data-preprocessing/512-roberta:/dataset" \
  -v "$PWD/../code:/code" \
  -v "$PWD:/model" \
  -d mlpen/bert_env:0 \
  /bin/bash -c \
  "python3 /code/run_pretrain.py >> /model/pretrain.txt 2>&1"

All outputs will be redirected to /pretrain.txt . The command will create a /model folder holding all checkpoints and log file. The training can be stopped anytime by running docker kill pretrain, and can be resumed from the last checkpoint using the same command for starting pretraining.

Pretraining from Different Model's Checkpoint

Copy a checkpoint (one of .model or .cp file) from /model folder to folder and add a key-value pair in /config.json : "from_cp": "/model/ " . One example is shown in nystrom-4096/config.json. This procedure also works for extending the max sequence length of a model (For example, use nystrom-512 pretrained weights as initialization for nystrom-4096).

GLUE

To finetune model on GLUE tasks, download GLUE datasets and place them under glue folder, then under folder , run

> /model/glue.txt 2>&1"">
docker run --rm --name=glue \
  --network=host --ipc=host --gpus all \
  -v "$PWD/../glue:/glue" \
  -v "$PWD/../code:/code" \
  -v "$PWD:/model" \
  -d mlpen/bert_env:0 \
  /bin/bash -c \
  "python3 /code/run_glue.py --batch_size 32 --lr 3e-5 --epoch 5 --task MRPC --checkpoint 99 >> /model/glue.txt 2>&1"

batch_size, lr, epoch, task, checkpoint can be changed to finetune on different task, different hyperparameters, or different checkpoints. All outputs will be redirected to /glue.txt . The log file is located at /model folder.

Citation

@article{xiong2021nystromformer,
  title={Nystr{\"o}mformer: A Nystr{\"o}m-based Algorithm for Approximating Self-Attention},
  author={Xiong, Yunyang and Zeng, Zhanpeng and Chakraborty, Rudrasis and Tan, Mingxing and Fung, Glenn and Li, Yin and Singh, Vikas},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}
Owner
Zhanpeng Zeng
Zhanpeng Zeng
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)

Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty

Clova AI Research 436 Dec 27, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022