(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

Overview

BERT Convolutions

Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains experiments for integrating convolutions and self-attention in BERT models. Code is adapted from Huggingface Transformers. Model code is in src/transformers/modeling_bert.py. Run on Python 3.6.9 and Pytorch 1.7.1 (see requirements.txt).

Training

To train tokenizer, use custom_scripts/train_spm_tokenizer.py. To pre-train BERT with a plain text dataset:

python3 run_language_modeling.py \
--model_type=bert \
--tokenizer_name="./data/sentencepiece/spm.model" \
--config_name="./data/bert_base_config.json" \
--do_train --mlm --line_by_line \
--train_data_file="./data/training_text.txt" \
--per_device_train_batch_size=32 \
--save_steps=25000 \
--block_size=128 \
--max_steps=1000000 \
--warmup_steps=10000 \
--learning_rate=0.0001 --adam_epsilon=1e-6 --weight_decay=0.01 \
--output_dir="./bert-experiments/bert"

The code above produces a cached file of examples (a list of lists of token indices). Each example is an un-truncated and un-padded sentence pair (but includes [CLS] and [SEP] tokens). Convert these lists to an iterable text file using custom_scripts/shuffle_cached_dataset.py. Then, you can pre-train BERT using an iterable dataset (saving memory):

python3 run_language_modeling.py \
--model_type=bert \
--tokenizer_name="./data/sentencepiece/spm.model" \
--config_name="./data/bert_base_config.json" \
--do_train --mlm --train_iterable --line_by_line \
--train_data_file="./data/iterable_pairs_train.txt" \
--per_device_train_batch_size=32 \
--save_steps=25000 \
--block_size=128 \
--max_steps=1000000 \
--warmup_steps=10000 \
--learning_rate=0.0001 --adam_epsilon=1e-6 --weight_decay=0.01 \
--output_dir="./bert-experiments/bert"

Optional flags to change BERT architecture when pre-training from scratch:
In the following, qk uses query/key self-attention, convfixed is a fixed lightweight convolution, convq is query-based dynamic lightweight convolution (relative embeddings), convk is a key-based dynamic lightweight convolution, and convolution is a fixed depthwise convolution.

--attention_kernel="qk_convfixed_convq_convk [num_positions_each_dir]"

Remove absolute position embeddings:

--remove_position_embeddings

Convolutional values, using depthwise-separable (depth) convolutions for half of heads (mixed), and using no activation function (no_act) between the depthwise and pointwise convolutions:

--value_forward="convolution_depth_mixed_no_act [num_positions_each_dir] [num_convolution_groups]"

Convolutional queries/keys for half of heads:

--qk="convolution_depth_mixed_no_act [num_positions_each_dir] [num_convolution_groups]"

Fine-tuning

Training and evaluation for downstream GLUE tasks (note: batch size represents max batch size, because batch size is adjusted for each task):

python3 run_glue.py \
--data_dir="./glue-data/data-tsv" \
--task_name=ALL \
--save_steps=9999999 \
--max_seq_length 128 \
--per_device_train_batch_size 99999 \
--tokenizer_name="./data/sentencepiece/spm.model" \
--model_name_or_path="./bert-experiments/bert" \
--output_dir="./bert-experiments/bert-glue" \
--hyperparams="electra_base" \
--do_eval \
--do_train

Prediction

Run the fine-tuned models on the GLUE test set:
This adds a file with test set predictions to each GLUE task directory.

python3 run_glue.py \
--data_dir="./glue-data/data-tsv" \
--task_name=ALL \
--save_steps=9999999 \
--max_seq_length 128 \
--per_device_train_batch_size 99999 \
--tokenizer_name="./data/sentencepiece/spm.model" \
--model_name_or_path="./bert-experiments/placeholder" \
--output_dir="./bert-experiments/bert-glue" \
--hyperparams="electra_base" \
--do_predict

Then, test results can be compiled into one directory. The test_results directory will contain test predictions, using the fine-tuned model with the highest dev set score for each task. The files in test_results can be zipped and submitted to the GLUE benchmark site for evaluation.

python3 custom_scripts/parse_glue.py \
--input="./bert-experiments/bert-glue" \
--test_dir="./bert-experiments/bert-glue/test_results"

Citation

@inproceedings{chang-etal-2021-convolutions,
  title={Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models},
  author={Tyler Chang and Yifan Xu and Weijian Xu and Zhuowen Tu},
  booktitle={ACL-IJCNLP 2021},
  year={2021},
}
Owner
mlpc-ucsd
mlpc-ucsd
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023