Fast, flexible and fun neural networks.

Overview

Brainstorm

Discontinuation Notice
Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as Tensorflow or Chainer. These and similar large projects are supported much more actively by a larger number of contributors. They provide, or plan to provide many available and planned features of brainstorm, and have several advantages, particularly in speed. In order to avoid fragmentation and waste of effort, we have decided to discontinue the brainstorm project and contribute to other frameworks and related projects such as Sacred instead. Many thanks to everyone who contributed! For us it has been a thoroughly enjoyable and educational experience.

Documentation Status PyPi Version MIT license Python Versions

Brainstorm makes working with neural networks fast, flexible and fun.

Combining lessons from previous projects with new design elements, and written entirely in Python, Brainstorm has been designed to work on multiple platforms with multiple computing backends.

Getting Started

A good point to start is the brief walkthrough of the cifar10_cnn.py example.
More documentation is in progress, and hosted on ReadTheDocs. If you wish, you can also run the data preparation scripts (data directory) and look at some basic examples (examples directory).

Status

Brainstorm is discontinued.

The currently available feature set includes recurrent (simple, LSTM, Clockwork), 2D convolution/pooling, Highway and batch normalization layers. API documentation is fairly complete and we are currently working on tutorials and usage guides.

Brainstorm abstracts computations via handlers with a consistent API. Currently, two handlers are provided: NumpyHandler for computations on the CPU (through Numpy/Cython) and PyCudaHandler for the GPU (through PyCUDA and scikit-cuda).

Installation

Here are some quick instructions for installing the latest master branch on Ubuntu.

# Install pre-requisites
sudo apt-get update
sudo apt-get install python-dev libhdf5-dev git python-pip
# Get brainstorm
git clone https://github.com/IDSIA/brainstorm
# Install
cd brainstorm
[sudo] pip install -r requirements.txt
[sudo] python setup.py install
# Build local documentation (optional)
sudo apt-get install python-sphinx
make docs
# Install visualization dependencies (optional)
sudo apt-get install graphviz libgraphviz-dev pkg-config
[sudo] pip install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

To use your CUDA installation with brainstorm:

$ [sudo] pip install -r pycuda_requirements.txt

Set location for storing datasets:

echo "export BRAINSTORM_DATA_DIR=/home/my_data_dir/" >> ~/.bashrc

Help and Support

If you have any suggestions or questions, please post to the Google group.

If you encounter any errors or problems, please let us know by opening an issue.

License

MIT License. Please see the LICENSE file.

Acknowledgements and Citation

Klaus Greff and Rupesh Srivastava would like to thank Jürgen Schmidhuber for his continuous supervision and encouragement. Funding from EU projects NASCENCE (FP7-ICT-317662) and WAY (FP7-ICT-288551) was instrumental during the development of this project. We also thank Nvidia Corporation for their donation of GPUs.

If you use Brainstorm in your research, please cite us as follows:

Klaus Greff, Rupesh Kumar Srivastava and Jürgen Schmidhuber. 2016. Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5. https://github.com/IDSIA/brainstorm

Bibtex:

@misc{brainstorm2015,
  author = {Klaus Greff and Rupesh Kumar Srivastava and Jürgen Schmidhuber},
  title = {{Brainstorm: Fast, Flexible and Fun Neural Networks, Version 0.5}},
  year = {2015},
  url = {https://github.com/IDSIA/brainstorm}
}
Owner
IDSIA
Istituto Dalle Molle di studi sull'intelligenza artificiale
IDSIA
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022