Repository for the paper: VoiceMe: Personalized voice generation in TTS

Overview

🗣 VoiceMe: Personalized voice generation in TTS

arXiv

Abstract

Novel text-to-speech systems can generate entirely new voices that were not seen during training. However, it remains a difficult task to efficiently create personalized voices from a high dimensional speaker space. In this work, we use speaker embeddings from a state-of-the-art speaker verification model (SpeakerNet) trained on thousands of speakers to condition a TTS model. We employ a human sampling paradigm to explore this speaker latent space. We show that users can create voices that fit well to photos of faces, art portraits, and cartoons. We recruit online participants to collectively manipulate the voice of a speaking face. We show that (1) a separate group of human raters confirms that the created voices match the faces, (2) speaker gender apparent from the face is well-recovered in the voice, and (3) people are consistently moving towards the real voice prototype for the given face. Our results demonstrate that this technology can be applied in a wide number of applications including character voice development in audiobooks and games, personalized speech assistants, and individual voices for people with speech impairment.

Demos

  • 📢 Demo website
  • 🔇 Unmute to listen to the videos on Github:
Examples-for-art-works.mp4
Example-chain.mp4

Preprocessing

Setup the repository

git clone https://github.com/polvanrijn/VoiceMe.git
cd VoiceMe
main_dir=$PWD

preprocessing_env="$main_dir/preprocessing-env"
conda create --prefix $preprocessing_env python=3.7
conda activate $preprocessing_env
pip install Cython
pip install git+https://github.com/NVIDIA/[email protected]#egg=nemo_toolkit[all]
pip install requests

Create face styles

We used the same sentence ("Kids are talking by the door", neutral recording) from the RAVDESS corpus from all 24 speakers. You can download all videos by running download_RAVDESS.sh. However, the stills used in the paper are also part of the repository (stills). We can create the AI Gahaku styles by running python ai_gahaku.py and the toonified version by running python toonify.py (you need to add your API key).

Obtain the PCA space

The model used in the paper was trained on SpeakerNet embeddings, so we to extract the embeddings from a dataset. Here we use the commonvoice data. To download it, run: python preprocess_commonvoice.py --language en

To extract the principal components, run compute_pca.py.

Synthesis

Setup

We'll assume, you'll setup a remote instance for synthesis. Clone the repo and setup the virtual environment:

git clone https://github.com/polvanrijn/VoiceMe.git
cd VoiceMe
main_dir=$PWD

synthesis_env="$main_dir/synthesis-env"
conda create --prefix $synthesis_env python=3.7
conda activate $synthesis_env

##############
# Setup Wav2Lip
##############
git clone https://github.com/Rudrabha/Wav2Lip.git
cd Wav2Lip

# Install Requirements
pip install -r requirements.txt
pip install opencv-python-headless==4.1.2.30
wget "https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth" -O "face_detection/detection/sfd/s3fd.pth"  --no-check-certificate

# Install as package
mv ../setup_wav2lip.py setup.py
pip install -e .
cd ..


##############
# Setup VITS
##############
git clone https://github.com/jaywalnut310/vits
cd vits

# Install Requirements
pip install -r requirements.txt

# Install monotonic_align
mv monotonic_align ../monotonic_align

# Download the VCTK checkpoint
pip install gdown
gdown https://drive.google.com/uc?id=11aHOlhnxzjpdWDpsz1vFDCzbeEfoIxru

# Install as package
mv ../setup_vits.py setup.py
pip install -e .

cd ../monotonic_align
python setup.py build_ext --inplace
cd ..


pip install flask
pip install wget

You'll need to do the last step manually (let me know if you know an automatic way). Download the checkpoint wav2lip_gan.pth from here and put it in Wav2Lip/checkpoints. Make sure you have espeak installed and it is in PATH.

Running

Start the remote service (I used port 31337)

python server.py --port 31337

You can send an example request locally, by running (don't forget to change host and port accordingly):

python request_demo.py

We also made a small 'playground' so you can see how slider values will influence the voice. Start the local flask app called client.py.

Experiment

The GSP experiment cannot be shared at this moment, as PsyNet is still under development.

Owner
Pol van Rijn
PhD student at Max Planck Institute for Empirical Aesthetics
Pol van Rijn
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022