An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Related tags

Deep LearningSFA
Overview

Sequence Feature Alignment (SFA)

By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao

This repository is an official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers, which is accepted to ACM MultiMedia 2021.

Introduction

TL; DR. We develop a domain adaptive object detection method SFA that is specialized for adaptive detection transformers. It contains a domain query-based feature alignment model and a token-wise feature alignment module for global and local feature alignment respectively, and a bipartite matching consistency loss for improving robustness.

SFA

Abstract. Detection transformers have recently shown promising object detection results and attracted increasing attention. However, how to develop effective domain adaptation techniques to improve its cross-domain performance remains unexplored and unclear. In this paper, we delve into this topic and empirically find that direct feature distribution alignment on the CNN backbone only brings limited improvements, as it does not guarantee domain-invariant sequence features in the transformer for prediction. To address this issue, we propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers. Technically, SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module. In DQFA, a novel domain query is used to aggregate and align global context from the token sequence of both domains. DQFA reduces the domain discrepancy in global feature representations and object relations when deploying in the transformer encoder and decoder, respectively. Meanwhile, TDA aligns token features in the sequence from both domains, which reduces the domain gaps in local and instance-level feature representations in the transformer encoder and decoder, respectively. Besides, a novel bipartite matching consistency loss is proposed to enhance the feature discriminability for robust object detection. Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods.

Main Results

The experimental results and model weights for Cityscapes to Foggy Cityscapes are shown below.

Model mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
SFA-DefDETR 21.5 41.1 20.0 3.9 20.9 43.0 Google Drive
SFA-DefDETR-BoxRefine 23.9 42.6 22.5 3.8 21.6 46.7 Google Drive
SFA-DefDETR-TwoStage 24.1 42.5 22.8 3.8 22.0 48.1 Google Drive

Note:

  1. All models of SFA are trained with total batch size of 4.
  2. "DefDETR" means Deformable DETR (with R50 backbone).
  3. "BoxRefine" means Deformable DETR with iterative box refinement.
  4. "TwoStage" indicates the two-stage Deformable DETR variant.
  5. The original implementation is based on our internal codebase. There are slight differences in the released code are slight differences. For example, we only use the middle features output by the first encoder and decoder layers for hierarchical feature alignment, to reduce computational costs during training.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n sfa python=3.7 pip

    Then, activate the environment:

    conda activate sfa
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements/requirements.txt
  • Logging using wandb (optional)

    pip install -r requirements/optional.txt

Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Usage

Dataset preparation

We use the preparation of Cityscapes to Foggy Cityscapes adaptation as demonstration. Other domain adaptation benchmarks can be prepared in analog. Cityscapes and Foggy Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

[coco_path]
└─ cityscapes
   └─ leftImg8bit
      └─ train
      └─ val
└─ foggy_cityscapes
   └─ leftImg8bit_foggy
      └─ train
      └─ val
└─ CocoFormatAnnos
   └─ cityscapes_train_cocostyle.json
   └─ cityscapes_foggy_train_cocostyle.json
   └─ cityscapes_foggy_val_cocostyle.json

Training

As an example, we provide commands for training our SFA on a single node with 4 GPUs for weather adaptation.

Training SFA-DeformableDETR

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr.sh --wandb

Training SFA-DeformableDETR-BoxRefine

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr_plus_iterative_bbox_refinement.sh --wandb

Training SFA-DeformableDETR-TwoStage

GPUS_PER_NODE=4 ./tools/run_dist_launch.sh 4 ./configs_da/sfa_r50_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage.sh --wandb

Training Source-only DeformableDETR

Please refer to the source branch.

Evaluation

You can get the config file and pretrained model of SFA (the link is in "Main Results" session), then run following command to evaluate it on Foggy Cityscapes validation set:

<path to config file> --resume <path to pre-trained model> --eval

You can also run distributed evaluation by using ./tools/run_dist_launch.sh or ./tools/run_dist_slurm.sh.

Acknowledgement

This project is based on DETR and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing SFA

If you find SFA useful in your research, please consider citing:

@inproceedings{wang2021exploring ,
  title={Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers},
  author={Wen, Wang and Yang, Cao and Jing, Zhang and Fengxiang, He and Zheng-Jun, Zha and Yonggang, Wen and Dacheng, Tao},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}
Owner
WangWen
WangWen
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Atif Hassan 103 Dec 14, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022