SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

Related tags

Deep LearningSalFBNet
Overview

SalFBNet

This repository includes Pytorch implementation for the following paper:

SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks, 2021. (pdf)

Guanqun Ding, Nevrez Imamoglu, Ali Caglayan, Masahiro Murakawa, Ryosuke Nakamura

input

Citation

Please cite the following papers if you use our data or codes in your research.

@misc{ding2021salfbnet,
      title={SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks}, 
      author={Guanqun Ding and Nevrez Imamouglu and Ali Caglayan and Masahiro Murakawa and Ryosuke Nakamura},
      year={2021},
      eprint={2112.03731},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{ding2021fbnet,
  title={FBNet: FeedBack-Recursive CNN for Saliency Detection},
  author={Ding, Guanqun and {\.I}mamo{\u{g}}lu, Nevrez and Caglayan, Ali and Murakawa, Masahiro and Nakamura, Ryosuke},
  booktitle={2021 17th International Conference on Machine Vision and Applications (MVA)},
  pages={1--5},
  year={2021},
  organization={IEEE}
}

Getting Started

1. Installation

You can install the envs mannually by following commands:

conda create -n salfbnet python=3.8
conda activate salfbnet
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
pip install scikit-learn scipy tensorboard tqdm
pip install torchSummeryX

Alternativaly, you can install the envs from yml file. Before running the command, please revise the 'prefix' with your PC name.

conda env create -f environment.yml

2. Run

The running code will be released after our paper is published.

3. Datasets

Dataset #Image #Training #Val. #Testing Size URL Paper
SALICON 20,000 10,000 5,000 5,000 ~4GB download link paper
MIT300 300 - - 300 ~44.4MB download link paper
MIT1003 1003 900* 103* - ~178.7MB download link paper
PASCAL-S 850 - - 850 ~108.3MB download link paper
DUT-OMRON 5,168 - - 5,168 ~151.8MB download link paper
TORONTO 120 - - 120 ~92.3MB download link paper
Pseudo-Saliency (Ours) 176,880 150,000 26,880 - ~24.2GB [download link] [paper]
  • *Training and Validation sets are randomly split by this work.
  • We will release our Pseudo-Saliency dataset after our paper is published.

4. Downloads

  • Our pre-trained models

    It will be available soon.

  • Our Pseudo-Saliency dataset (~24.2GB)

    It will be available soon.

    1. Downloading all zipped files, and using following command to restore the complete zip file:
    zip -F PseudoSaliency_avg_dataset.zip --out PseudoSaliency_avg.zip
    
    1. Then unzip the file:
    unzip PseudoSaliency_avg.zip
    
  • Our testing saliency results on public datasets

    You can download our testing saliency resutls from this [link].

Performance Evaluation

1. Visulization Results

input

2. Testing Performance on DUT-OMRON, PASCAL-S, and TORONTO

input

3. Testing Performance on SALICON

input

4. Testing Performance on MIT300

input

5. Efficiency Comparison

input

Pseudo-Saliency Dataset

1. Annotation

input

2. Pseudo Saliency Distribution

input

Acknowledgement

Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022