SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

Related tags

Deep LearningSalFBNet
Overview

SalFBNet

This repository includes Pytorch implementation for the following paper:

SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks, 2021. (pdf)

Guanqun Ding, Nevrez Imamoglu, Ali Caglayan, Masahiro Murakawa, Ryosuke Nakamura

input

Citation

Please cite the following papers if you use our data or codes in your research.

@misc{ding2021salfbnet,
      title={SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks}, 
      author={Guanqun Ding and Nevrez Imamouglu and Ali Caglayan and Masahiro Murakawa and Ryosuke Nakamura},
      year={2021},
      eprint={2112.03731},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{ding2021fbnet,
  title={FBNet: FeedBack-Recursive CNN for Saliency Detection},
  author={Ding, Guanqun and {\.I}mamo{\u{g}}lu, Nevrez and Caglayan, Ali and Murakawa, Masahiro and Nakamura, Ryosuke},
  booktitle={2021 17th International Conference on Machine Vision and Applications (MVA)},
  pages={1--5},
  year={2021},
  organization={IEEE}
}

Getting Started

1. Installation

You can install the envs mannually by following commands:

conda create -n salfbnet python=3.8
conda activate salfbnet
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
pip install scikit-learn scipy tensorboard tqdm
pip install torchSummeryX

Alternativaly, you can install the envs from yml file. Before running the command, please revise the 'prefix' with your PC name.

conda env create -f environment.yml

2. Run

The running code will be released after our paper is published.

3. Datasets

Dataset #Image #Training #Val. #Testing Size URL Paper
SALICON 20,000 10,000 5,000 5,000 ~4GB download link paper
MIT300 300 - - 300 ~44.4MB download link paper
MIT1003 1003 900* 103* - ~178.7MB download link paper
PASCAL-S 850 - - 850 ~108.3MB download link paper
DUT-OMRON 5,168 - - 5,168 ~151.8MB download link paper
TORONTO 120 - - 120 ~92.3MB download link paper
Pseudo-Saliency (Ours) 176,880 150,000 26,880 - ~24.2GB [download link] [paper]
  • *Training and Validation sets are randomly split by this work.
  • We will release our Pseudo-Saliency dataset after our paper is published.

4. Downloads

  • Our pre-trained models

    It will be available soon.

  • Our Pseudo-Saliency dataset (~24.2GB)

    It will be available soon.

    1. Downloading all zipped files, and using following command to restore the complete zip file:
    zip -F PseudoSaliency_avg_dataset.zip --out PseudoSaliency_avg.zip
    
    1. Then unzip the file:
    unzip PseudoSaliency_avg.zip
    
  • Our testing saliency results on public datasets

    You can download our testing saliency resutls from this [link].

Performance Evaluation

1. Visulization Results

input

2. Testing Performance on DUT-OMRON, PASCAL-S, and TORONTO

input

3. Testing Performance on SALICON

input

4. Testing Performance on MIT300

input

5. Efficiency Comparison

input

Pseudo-Saliency Dataset

1. Annotation

input

2. Pseudo Saliency Distribution

input

Acknowledgement

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022