A Lightweight Hyperparameter Optimization Tool 🚀

Overview

Lightweight Hyperparameter Optimization 🚀

Pyversions PyPI version Code style: black Colab

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline. It supports real, integer & categorical search variables and single- or multi-objective optimization.

Core features include the following:

  • API Simplicity: strategy.ask(), strategy.tell() interface & space definition.
  • Strategy Diversity: Grid, random, coordinate search, SMBO & wrapping around FAIR's nevergrad.
  • Search Space Refinement based on the top performing configs via strategy.refine(top_k=10).
  • Export of configurations to execute via e.g. python train.py --config_fname config.yaml.
  • Storage & reload search logs via strategy.save(<log_fname>), strategy.load(<log_fname>).

For a quickstart check out the notebook blog 📖 .

The API 🎮

from mle_hyperopt import RandomSearch

# Instantiate random search class
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 32,
                                                "end": 128,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]})

# Simple ask - eval - tell API
configs = strategy.ask(5)
values = [train_network(**c) for c in configs]
strategy.tell(configs, values)

Implemented Search Types 🔭

Search Type Description search_config
drawing GridSearch Search over list of discrete values -
drawing RandomSearch Random search over variable ranges refine_after, refine_top_k
drawing CoordinateSearch Coordinate-wise optimization with fixed defaults order, defaults
drawing SMBOSearch Sequential model-based optimization base_estimator, acq_function, n_initial_points
drawing NevergradSearch Multi-objective nevergrad wrapper optimizer, budget_size, num_workers

Variable Types & Hyperparameter Spaces 🌍

Variable Type Space Specification
drawing real Real-valued Dict: begin, end, prior/bins (grid)
drawing integer Integer-valued Dict: begin, end, prior/bins (grid)
drawing categorical Categorical List: Values to search over

Installation

A PyPI installation is available via:

pip install mle-hyperopt

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/mle-infrastructure/mle-hyperopt.git
cd mle-hyperopt
pip install -e .

Further Options 🚴

Saving & Reloading Logs 🏪

# Storing & reloading of results from .pkl
strategy.save("search_log.json")
strategy = RandomSearch(..., reload_path="search_log.json")

# Or manually add info after class instantiation
strategy = RandomSearch(...)
strategy.load("search_log.json")

Search Decorator 🧶

from mle_hyperopt import hyperopt

@hyperopt(strategy_type="grid",
          num_search_iters=25,
          real={"x": {"begin": 0., "end": 0.5, "bins": 5},
                "y": {"begin": 0, "end": 0.5, "bins": 5}})
def circle(config):
    distance = abs((config["x"] ** 2 + config["y"] ** 2))
    return distance

strategy = circle()

Storing Configuration Files 📑

# Store 2 proposed configurations - eval_0.yaml, eval_1.yaml
strategy.ask(2, store=True)
# Store with explicit configuration filenames - conf_0.yaml, conf_1.yaml
strategy.ask(2, store=True, config_fnames=["conf_0.yaml", "conf_1.yaml"])

Retrieving Top Performers & Visualizing Results 📉

# Get the top k best performing configurations
id, configs, values = strategy.get_best(top_k=4)

# Plot timeseries of best performing score over search iterations
strategy.plot_best()

# Print out ranking of best performers
strategy.print_ranking(top_k=3)

Refining the Search Space of Your Strategy 🪓

# Refine the search space after 5 & 10 iterations based on top 2 configurations
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 1,
                                                "end": 5,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]},
                        search_config={"refine_after": [5, 10],
                                       "refine_top_k": 2})

# Or do so manually using `refine` method
strategy.tell(...)
strategy.refine(top_k=2)

Note that the search space refinement is only implemented for random, SMBO and nevergrad-based search strategies.

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue 🤗 .

  • Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
  • Add improvement method indicating if score is better than best stored one
  • Fix logging message when log is stored
  • Add save option for best plot
  • Make json serializer more robust for numpy data types
  • Make sure search space refinement works for different batch sizes
  • Add args, kwargs into decorator
  • Check why SMBO can propose same config multiple times. Add Hutter reference.
Comments
  • [FEATURE] Hyperband

    [FEATURE] Hyperband

    Hi! I was wondering if the Hyperband hyperparameter algorithm is something you want implemented.

    I'm willing to spend some time working on it if there's interest.

    opened by colligant 5
  • [FEATURE] Option to pickle the whole strategy

    [FEATURE] Option to pickle the whole strategy

    Right now strategy.save produces a JSON with the log. Any reason you didn't opt for (or have an option of) pickling the whole strategy? Two motivations for this:

    1. Not having to re-init the strategy with all the args/kwargs
    2. Not having to loop through tell! SMBO can take quite some time to do this.
    opened by alexander-soare 4
  • Type checking strategy.log could be made more flexible?

    Type checking strategy.log could be made more flexible?

    Yay first issue! Congrats Robert, this is a great interface. Haven't used a hyperopt library in a while and this felt so easy to pick up.


    For example https://github.com/RobertTLange/mle-hyperopt/blob/57eb806e95c854f48f8faac2b2dc182d2180d393/mle_hyperopt/search.py#L251

    raises an error if my objective is numpy.float64. Also noticed https://github.com/RobertTLange/mle-hyperopt/blob/57eb806e95c854f48f8faac2b2dc182d2180d393/mle_hyperopt/search.py#L206

    Could we just have

    isinstance(strategy.log[0]['objective'], (float, int))
    

    which would cover the numpy types?

    opened by alexander-soare 4
  • Successive Halving, Hyperband, PBT

    Successive Halving, Hyperband, PBT

    • [x] Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
    • [x] Add improvement method indicating if score is better than best stored one
    • [x] Fix logging message when log is stored
    • [x] Add save option for best plot
    • [x] Make json serializer more robust for numpy data types
    • [x] Add possibility to save as .pkl file by providing filename in .save method ending with .pkl (issue #2)
    • [x] Add args, kwargs into decorator
    • [x] Adds synchronous Successive Halving (SuccessiveHalvingSearch - issue #3)
    • [x] Adds synchronous HyperBand (HyperbandSearch - issue #3)
    • [x] Adds synchronous PBT (PBTSearch - issue #4 )
    opened by RobertTLange 1
  • [Feature] Synchronous PBT

    [Feature] Synchronous PBT

    Move PBT ask/tell functionality from mle-toolbox experimental to mle-hyperopt. Is there any literature/empirical evidence for the importance of being asynchronous?

    enhancement 
    opened by RobertTLange 1
Releases(v0.0.7)
  • v0.0.7(Feb 20, 2022)

    Added

    • Log reloading helper for post-processing.

    Fixed

    • Bug fix in mle-search with imports of dependencies. Needed to append path.
    • Bug fix with cleaning nested dictionaries. Have to make sure not to delete entire sub-dictionary.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.6(Feb 20, 2022)

    Added

    • Adds a command line interface for running a sequential search given a python script <script>.py containing a function main(config), a default configuration file <base>.yaml & a search configuration <search>.yaml. The main function should return a single scalar performance score. You can then start the search via:

      mle-search <script>.py --base_config <base>.yaml --search_config <search>.yaml --num_iters <search_iters>
      

      Or short via:

      mle-search <script>.py -base <base>.yaml -search <search>.yaml -iters <search_iters>
      
    • Adds doc-strings to all functionalities.

    Changed

    • Make it possible to optimize parameters in nested dictionaries. Added helpers flatten_config and unflatten_config. For shaping 'sub1/sub2/vname' <-> {sub1: {sub2: {vname: v}}}
    • Make start-up message also print fixed parameter settings.
    • Cleaned up decorator with the help of Strategies wrapper.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.5(Jan 5, 2022)

    Added

    • Adds possibility to store and reload entire strategies as pkl file (as asked for in issue #2).
    • Adds improvement method indicating if score is better than best stored one
    • Adds save option for best plot
    • Adds args, kwargs into decorator
    • Adds synchronous Successive Halving (SuccessiveHalvingSearch - issue #3)
    • Adds synchronous HyperBand (HyperbandSearch - issue #3)
    • Adds synchronous PBT (PBTSearch - issue #4)
    • Adds option to save log in tell method
    • Adds small torch mlp example for SH/Hyperband/PBT w. logging/scheduler
    • Adds print welcome/update message for strategy specific info

    Changed

    • Major internal restructuring:
      • clean_data: Get rid of extra data provided in configuration file
      • tell_search: Update model of search strategy (e.g. SMBO/Nevergrad)
      • log_search: Add search specific log data to evaluation log
      • update_search: Refine search space/change active strategy etc.
    • Also allow to store checkpoint of trained models in tell method.
    • Fix logging message when log is stored
    • Make json serializer more robust for numpy data types
    • Robust type checking with isinstance(self.log[0]["objective"], (float, int, np.integer, np.float))
    • Update NB to include mle-scheduler example
    • Make PBT explore robust for integer/categorical valued hyperparams
    • Calculate total batches & their sizes for hyperband
    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Oct 24, 2021)

    • Fixes CoordinateSearch active grid search dimension updating. We have to account for the fact that previous coordinates are not evaluated again after switching the active variable.
    • Generalizes NevergradSearch to wrap around all search strategies.
    • Adds rich logging to all console print statements.
    • Updates documentation and adds text to getting_started.ipynb.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Oct 20, 2021)

    • Fixes import bug when using PyPi installation.
    • Enhances documentation and test coverage.
    • Adds search space refinement for nevergrad and smbo search strategies via refine_after and refine_top_k:
    strategy = SMBOSearch(
            real={"lrate": {"begin": 0.1, "end": 0.5, "prior": "uniform"}},
            integer={"batch_size": {"begin": 1, "end": 5, "prior": "uniform"}},
            categorical={"arch": ["mlp", "cnn"]},
            search_config={
                "base_estimator": "GP",
                "acq_function": "gp_hedge",
                "n_initial_points": 5,
                "refine_after": 5,
                "refine_top_k": 2,
            },
            seed_id=42,
            verbose=True
        )
    
    • Adds additional strategy boolean option maximize_objective to maximize instead of performing default black-box minimization.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Oct 16, 2021)

    Base API implementation:

    from mle_hyperopt import RandomSearch
    
    # Instantiate random search class
    strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                            "end": 0.5,
                                            "prior": "log-uniform"}},
                            integer={"batch_size": {"begin": 32,
                                                    "end": 128,
                                                    "prior": "uniform"}},
                            categorical={"arch": ["mlp", "cnn"]})
    
    # Simple ask - eval - tell API
    configs = strategy.ask(5)
    values = [train_network(**c) for c in configs]
    strategy.tell(configs, values)
    
    Source code(tar.gz)
    Source code(zip)
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022