Kaggle competition: Springleaf Marketing Response

Overview

PruebaEnel

Prueba Kaggle-Springleaf-master

Prueba Kaggle-Springleaf

Kaggle competition: Springleaf Marketing Response

Competencia de Kaggle: Marketingarketing de Springleaf por parte del equipo KarolCastillo

Introduccion

Este repositorio contiene cuadernos de ipython preparados para la competencia Kaggle: Springleaf Marketing Response. Springleaf ofrece a sus clientes préstamos personales y para automóviles que los ayudan a tomar el control de sus vidas y sus finanzas. El correo directo es una forma importante en que el equipo de Springleaf puede conectarse con los clientes que pueden necesitar un préstamo. Para mejorar su esfuerzo específico, a Springleaf le gustaría centrarse en los clientes que probablemente respondan y sean buenos candidatos para sus servicios.

Usando un gran conjunto de funciones y Data anonimizada anonimizadas, Springleaf nos pide que predigamos qué clientes responderán a una oferta de correo directo.

Data

Contamos con un conjunto de datos anonymized cse proporciona información del cliente. Cada entrada (fila) corresponde a un cliente. la variable de respuesta es binaria. Hay más de 140.000 entradas tanto en el conjunto de prueba como en el de entrenamiento.

Guia Proyecto

Procesamiento de la Data

En la carpeta de preprocesamiento, los datos de características se procesaron de manera diferente en función de los diferentes tipos de datos.

  1. Los datos numéricos se preprocesaron en data_preprocessing_SL_Feb2022_train_test_th60.ipynb. El procesamiento clave incluye imputación de valores perdidos, detección de valores atípicos, transformación logarítmica de columnas sesgadas a la derecha, estandarización de columnas numéricas, etc. Además de las columnas numéricas básicas, se derivaron 10 columnas numéricas. Las columnas categóricas con un número limitado de valores se transformaron utilizando DictVectorizer (codificación OneHot). Las columnas numéricas con muy pocos valores se separan de otras columnas numéricas, al igual que las columnas de series temporales.

  2. Los datos de series temporales se procesaron en data_preprocessing_SL_Feb2022_time_series_normalization.ipynb

  3. Las columnas categóricas con demasiados valores, así como las columnas numéricas con muy pocos valores, se procesaron en data_preprocessing_SL_Feb2022_cat_num_normalization.ipynb

  4. Todas las demás columnas categóricas se preprocesaron con la codificación OneHot en data_preprocessing_SL_Feb2022_th60_cat_label_encoding.ipynb

Caracteristicas de la seleccion

Estas Caracteristicas de Seleccion estan en la carpeta seleccion_característicascaracterísticas. Se escogieron multiples metodos, incluyendo RFECV, greedy forward selection, backward selection and the SelectKBest from sklearn. Entrada de los Modelos:

  1. Modelo Lineal (Logistic, SVM, Passive aggressive): numerical variables
  2. A´rbol de Busqueda (xgBoost, random forest, scikit learn gradient boosting): numerical + veriables categoricas

Optimizacion Modelos

Entrenamiento de Modelos gridsearchCV o el home-built método que genera predicción en el conjunto de prueba durante la validación cruzada, la predicción se puede usar más adelante como metacaracterísticas. La búsqueda en cuadrícula se realizó con diferentes algoritmos, como xgboost, random forest, online svm y regresión logística.

Prediccion Final

Las predicciones finales se realizan con modelos de nivel 0 y nivel 1 utilizando características básicas, características derivadas y metacaracterísticas, utilizando modelos que incluyen xgBoost, RandomForest, regresión logística SGD, máquinas de vectores de soporte SGD, clasificador pasivo-agresivo SDG.

Modelos

La idea es selecccionar el Modelo más optimo

Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022