Kaggle competition: Springleaf Marketing Response

Overview

PruebaEnel

Prueba Kaggle-Springleaf-master

Prueba Kaggle-Springleaf

Kaggle competition: Springleaf Marketing Response

Competencia de Kaggle: Marketingarketing de Springleaf por parte del equipo KarolCastillo

Introduccion

Este repositorio contiene cuadernos de ipython preparados para la competencia Kaggle: Springleaf Marketing Response. Springleaf ofrece a sus clientes préstamos personales y para automóviles que los ayudan a tomar el control de sus vidas y sus finanzas. El correo directo es una forma importante en que el equipo de Springleaf puede conectarse con los clientes que pueden necesitar un préstamo. Para mejorar su esfuerzo específico, a Springleaf le gustaría centrarse en los clientes que probablemente respondan y sean buenos candidatos para sus servicios.

Usando un gran conjunto de funciones y Data anonimizada anonimizadas, Springleaf nos pide que predigamos qué clientes responderán a una oferta de correo directo.

Data

Contamos con un conjunto de datos anonymized cse proporciona información del cliente. Cada entrada (fila) corresponde a un cliente. la variable de respuesta es binaria. Hay más de 140.000 entradas tanto en el conjunto de prueba como en el de entrenamiento.

Guia Proyecto

Procesamiento de la Data

En la carpeta de preprocesamiento, los datos de características se procesaron de manera diferente en función de los diferentes tipos de datos.

  1. Los datos numéricos se preprocesaron en data_preprocessing_SL_Feb2022_train_test_th60.ipynb. El procesamiento clave incluye imputación de valores perdidos, detección de valores atípicos, transformación logarítmica de columnas sesgadas a la derecha, estandarización de columnas numéricas, etc. Además de las columnas numéricas básicas, se derivaron 10 columnas numéricas. Las columnas categóricas con un número limitado de valores se transformaron utilizando DictVectorizer (codificación OneHot). Las columnas numéricas con muy pocos valores se separan de otras columnas numéricas, al igual que las columnas de series temporales.

  2. Los datos de series temporales se procesaron en data_preprocessing_SL_Feb2022_time_series_normalization.ipynb

  3. Las columnas categóricas con demasiados valores, así como las columnas numéricas con muy pocos valores, se procesaron en data_preprocessing_SL_Feb2022_cat_num_normalization.ipynb

  4. Todas las demás columnas categóricas se preprocesaron con la codificación OneHot en data_preprocessing_SL_Feb2022_th60_cat_label_encoding.ipynb

Caracteristicas de la seleccion

Estas Caracteristicas de Seleccion estan en la carpeta seleccion_característicascaracterísticas. Se escogieron multiples metodos, incluyendo RFECV, greedy forward selection, backward selection and the SelectKBest from sklearn. Entrada de los Modelos:

  1. Modelo Lineal (Logistic, SVM, Passive aggressive): numerical variables
  2. A´rbol de Busqueda (xgBoost, random forest, scikit learn gradient boosting): numerical + veriables categoricas

Optimizacion Modelos

Entrenamiento de Modelos gridsearchCV o el home-built método que genera predicción en el conjunto de prueba durante la validación cruzada, la predicción se puede usar más adelante como metacaracterísticas. La búsqueda en cuadrícula se realizó con diferentes algoritmos, como xgboost, random forest, online svm y regresión logística.

Prediccion Final

Las predicciones finales se realizan con modelos de nivel 0 y nivel 1 utilizando características básicas, características derivadas y metacaracterísticas, utilizando modelos que incluyen xgBoost, RandomForest, regresión logística SGD, máquinas de vectores de soporte SGD, clasificador pasivo-agresivo SDG.

Modelos

La idea es selecccionar el Modelo más optimo

RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023